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Motivation

Queues are a part of our everyday lives, from the long lunch queues,
to peak hour traffic jams. As a result, queues are also a major topic
within operational research.

In classical queueing models (i.e. M/M/1), we assume a poisson dis-
tributed entry and an exponentially distributed service time using one
server. This is due to the memoryless property of these distributions.

The issue with classical queueing systems is that real world systems
are far too complex and typically requires numerical solutions as they
are analytically intractable, thus we choose to simulate.

M/M/1 Queues

To simulate queues, we consider generating and tracking discrete
points where events occur, using the interarrival distribution, which
is exponentially distributed.

To test the simulation, compare the simulation to the theoretical result.
For M/M/1, we can simply use the steady state solution.

pn = (1 − ρ)ρn, with ρ = λ

µ
.

In this case, we simulate enough to reach steady state, then create a
histogram based final state of simulation.

Figure 1. Histogram of Simulations Steady State Probabilities to Theory

However, due to assumption of constant arrival rate, M/M/1 models
are typically far too unrealistic to model real world queues.

M(t)/M/1 Queues

Arrival rates often vary, complicating simulations which assumes an
exponentially distributed interarrival times. To address this, we could
use the thinning algorithm.

Suppose λ = sup λ(t), we simulate a homogeneous poisson process
with rate λ. With each arrival occuring at t, we then accept the arrival
with probability,

P{Accept Arrival} = λ(t)
λ

.

With changing arrival rate,wecannot use steadystate solutions. In this
scenario, to verify results of the simulation, use numerical integration.

Given that pn(t) denotes P{n in system at time t}:

1. First, set the beginning of the queue where p0(0) = 1 and pn(0) = 0.
2. For the next time point t + d, where d is a selected small time step,

pn(t + d) = λ(t)dpn−1(t) + [1 − λ(t)d − µd]pn(t) + µdpn+1(t)
p0(t + d) = [1 − λ(t)d]pn(t) + µdpn+1(t)

pnmax(t + d) = λ(t)dpnmax−1 + [1 − µd]pnmax

(1)

3. Increment time point: t = t + d.

4. Repeat until maximum time.

M(t)/M/1 Results

Without a steady state solution, to compute the results, we can refer
to average queue length at time t.

L(t) =
nmax∑
n=0

npn(t)

Figure 2. M(t)/M/1 Average System Length

Decision Making

Simulations can be incorporated within decision-making algorithms,
where decision-makers optimises set objective function F (λ) that
captures the desired system dynamics.

Figure 3. Decision Making Algorithm Flow Chart

For example, at an M/M/1 target system, we may choose to optimise
λ based on observations for µ̂ to minimise waiting time and maximise
number of arrivals.

1. Observe a period of time tmax with true µ and λt such that one
would select a suitable λ0.

2. Use the MLE to estimate the departure parameter µ.

3. Simulate the queue over a selected set of λs.

4. Choose λ∗
t = arg maxλ F (λ). Set the next cycle λt+1 = λ∗

t .

FutureWork

Improve computational time for simulations.
Develop simulations for more advanced queues with less
assumptions
Explore further simulation optimisation methodologies.
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