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Motivation
Why use capture-recapture?

Figure: Ringed Blackbird [7]
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The Cormack-Jolly-Seber Model

We will be using a standard model known as the Cormack-Jolly-Seber
(CJS) model. For this we assume;

1. The population is only open to animals leaving,
2. All emigration during the study is permanent,
3. Sampling is instantaneous,
4. No marks are lost during the study.
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Cormack-Jolly-Seber Structure

The CJS model conditions on the first capture of an animal and includes
parameters;

1. pi, the probability of recapture in period i, i = 2, . . . ,K
2. ϕi, the probability of apparent/local survival between occasions i

and i + 1, i = 1, . . . ,K − 1

Occasion 1 2 3 4 5
Capture History 1 0 1 1 0
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Capture Histories to Probabilities
What is the probability of capture history ω∗ = {1, 0, 1, 1, 0}?

1 0 1 1 0

Figure: Order of Parameter Occurence

Hence,
P(ω∗) = ϕ1(1 − p2) · ϕ2p3 · ϕ3p4 · (1 − ϕ4p5)

The final survival and capture probabilities are confounded.
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Likelihood Formation in MARK/RMark

The programme MARK formulates the likelihood as;

L(ϕ,p | Capture Histories) =
∏
ω∈Ω

[IP(ω)]nω

where
▶ Ω is the set of possible capture histories,
▶ nω is the number of animals with capture history ω,
▶ IP(ω) is the probability of capture history ω.

This is solved numerically by Newton-Rhapsom.
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Adding Covariates

We can model parameters as a function of environmental or individual
covariates;

log

(
ϕi

1 − ϕi

)
= xT

i β

This can be substituted into the likelihood for numerical optimisation.
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Random Effects

Suppose variations over time are due only to natural variance. i.e.

log

(
ϕi

1 − ϕi

)
= β0 + ϵi

where:
▶ β0 is an unknown mean,
▶ ϵi ∼ N(0, σ2) with σ2 known as the process or environmental

variance.
This random effect motivates a switch to Bayesian inference.
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Random Effects Illustration

D - 2

the general (time-dependent) CJS model �ts well and there is no evidence of any explainable structural
time variation, such as a linear time trend, in this set of survival rates, or variation as a function of an
environmental covariate. Instead, there may be unstructured time variation in the Si that is not easily
modeled by any simple smooth parametric form, yet which cannot be wisely ignored. In this case it
is both realistic and desirable to conceptualize the actual unknown Si as varying, over these equal-
length time intervals, about a conceptual population mean E(S) � µ, with some population variation,
σ2 (Fig. E.1).

Figure D.1: Schematic representation of variation in occasion-speci�c parameters θi , as if the parameters were

drawn randomly from some underlying distribution with mean µ and variance σ2.

Here, by population, we will mean a conceptual statistical distribution of survival probabilities, such
that the Si may be considered as a sample from this distribution. Hence, we proceed as if Si are a random

sample from a distribution with mean µ and variance σ2. Doing so can lead to improved inferences
on the Si regardless of the truth of this conceptualization if the Si do in fact vary in what seems
like a random, or exchangeable, manner. The parameter σ2 is now the conventional measure of the
unstructured variation in the Si , and we can usefully summarize S1 . . . Sk by two parameters: µ and
σ2. The complication is that we do not know the Si; we have only estimates Ŝi, subject to non-ignorable
sampling variances and covariances, from a capture-recapture model wherein we traditionally consider
the Si as �xed, unrelated parameters. We would like to estimate µ and σ2, and adjust our estimates to
account for the di�erent contributions to the overall variation in our estimates due to sampling, and the
environment. For this, we consider a random e�ects model.

scenario 2 – separating sampling + environmental (process) variation

Precise and unbiased estimation of parameter uncertainly (say, the SE of the parameter estimate) is
critical to analysis of stochastic demographic models. Consider for example, the estimation of the risk
of extinction. It is well known (and entirely intuitive) that any simply stochastic process (say, growth
of an age- or size-structured population through time) is more likely to go extinct the more variable a

Appendix D. Variance components and random effects models in MARK . . .

Figure: Process Variance of a Parameter from [1][p893]
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Random Effects Simulation

We simulated capture-recapture data with a population size N = 300,
capture occasions K = 10, a constant recapture rate p = 0.5 and survival
rates such that;

log

(
ϕi

1 − ϕi

)
= 1.4 + ϵi

where;
▶ ϵi ∼ N(0, 0.5)

We used MCMC to make posterior draws having used the uninformative
priors from [5];

1. β0 ∼ Un(−5, 5)
2. σ ∼ Un(0, 3)
3. logit(p) ∼ N(0, 103)
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MCMC Results

After 5000 burn in, a thinning rate of 5 applied to 100,000 posterior
draws using WinBUGS, we have posterior estimates;
▶ β̂0 = 1.402 (0.68, 2.6),
▶ σ̂2 = 0.867 (0.068, 5.94),
▶ p̂ = 0.467 (0.42, 0.51)
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Apparent Survival Results
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Multiple Random Effects
Multiple random effects used by [3] for multiple colonies of Puffins in the
North Atlantic. Extended by [5] to describe multiple species of birds on
the Isle of May.

Figure: Puffins on the Isle of May
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Isle of May Birds

Figure: Two Guillemots [7] Figure: Two Razorbills [7]
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Multi-Species Model

We set up likelihoods for each species using the CJS model and proceed
to fit the model;

log

(
ϕi,s

1 − ϕi,s

)
= fs(xT

i,s) + δi + ϵi,s

where
▶ δi ∼ N(0, σ2

δ), constant across all species,
▶ ϵi,s ∼ N(0, σ2

s ) exclusive to each species.
▶ fs(xT

i,s) is a unique covariate link function for each species.
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Measuring Synchrony

For each species, we define the Intra-class correlation coefficient;

ICCs =
σ̂2
δ

σ̂2
δ + σ̂2

s

▶ Quantifies the environmental variance shared between species,
▶ High synchrony ⇒ ICCs → 1,
▶ Low synchrony ⇒ ICCs → 0
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What generates Synchrony?

We can fit a model for each species with and without covariates. This
gives;
▶ σ̂2

s (res) the residual species variance from the covariate model
▶ σ̂2

s (total) the species variance from the intercept only model

For each species we define;

Cs = 1 − σ̂2
s (res)

σ̂2
s (total)

▶ Covariates cause synchrony ⇒ Cs → 1
▶ Covariates do not synchrony ⇒ Cs → 0

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training
Random Effects Modelling with Capture-Recapture Data



Intro Modelling with CJS CJS Extensions Multiple random effects Conclusions

What generates Synchrony?

We can fit a model for each species with and without covariates. This
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▶ σ̂2

s (res) the residual species variance from the covariate model
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s (total) the species variance from the intercept only model
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σ̂2
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Isle of May results

The results of the study on Isle of May birds were;
▶ Puffins: ICC1 = 0.894 (0.304, 0.999), and Cpuffins = 0.81
▶ Guillemots: ICC2 = 0.787 (0.350, 0.996), and Cguillemots = 0.425
▶ Razorbills: ICC3 = 0.785 (0.205, 0.998), and Crazorbills = 0.595

This indicates common random effects can describe a large amount of
variation between species.

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training
Random Effects Modelling with Capture-Recapture Data



Intro Modelling with CJS CJS Extensions Multiple random effects Conclusions

Benefits and Limitations

Benefits:
▶ Detects links between

populations,
▶ Describes expected variation

and environmental effects,
▶ Combats parameter

redundancy,
▶ Reduces parameter number

Limitations:
▶ Requires data for multiple

populations,
▶ Does not describe the

synchrony source fully,
▶ Does not describe pairwise

effects.
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Further Extensions

▶ Up to 4 random effects included in [2],
▶ Used for birth rates in an Integrated Population Model by [4],

There are further opportunities for;
▶ Different parameters and model types,
▶ Inclusion of predators or prey,
▶ Assessing synchrony over time
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Thank You!
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M-arrays

We can describe our CR-data using a series of sufficient statistics within
an m-array. For example, given 5 sampling occasions;

Number Released Number Recaptured Never Recaptured
R1 m1,2 m1,3 m1,4 m1,5 m1,0
R2 m2,3 m2,4 m2,5 m2,0
R3 m3,4 m3,5 m3,0
R4 m4,5 m4,0

where;
▶ Ri is the number captured in occasion i and subsequently released.
▶ mi,j is the number released from occasion i and first recaptured in

period j
Here, mi,0 = Ri −

∑K
j=i+1 mi,j
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M-array probabilities

For notation we use;
▶ ϕi - The probability of survival from period i to i + 1
▶ pi - The probability of recapture in period i given the unit is alive

The probability of each mi,j cell in the m-array is then defined as;

νij =

{j−1∏
k=i

ϕk

j−1∏
k=i+1

(1 − pk)

}
pj for i < j

Similarly the probability of never being recaptured after first capture in i
is;

χi = 1 −
T∑

j=i+1
νij
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Multinomial distributions in M-arrays

To form a likelihood, we consider each row in the M-array as a
multinomial distribution. For example;

L1(ϕ,p | R1,m1.) =

(
R1

m1,j

) 5∏
j=2

ν
m1,j
1j · χR1−

∑5
k=2 m1,k

1

where we have the multinomial coefficient;(
R1

m1,j

)
=

R1!

(m1,2)!(m1,3)!(m1,4)!(m1,5)!(R1 −
∑5

j=2 m1,j)!
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Multinomial Likelihood

By combining the likelihoods of each row, we get the total likelihood;

L(ϕ,p | Ri,mij) ∝
T−1∏
i=1

T∏
j=i+1

ν
mi,j
ij · χRi−

∑T
j=i+1 mij

i

This gives us the full log-likelihood from which explicit MLEs may be
found;

logL(ϕ,p | Ri,mij) =
T∑

i=1
log(Li)
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Final Probability
▶ The least amount of data is in the final period,
▶ ϵ9 was the 6th percentile.
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Figure: Central 95% of N(0,0.5) in Green
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Graph with MLEs
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