

Random Effects Modelling with Capture-Recapture Data

J. Marriner¹ M. Howell²

¹University of Glasgow

²STOR-i Centre for Doctoral Training

30/08/2024

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ K K 用 K K E K K E K E H E YO C A

Motivation

Why use capture-recapture?

Figure: Ringed Blackbird [\[7\]](#page-24-0)

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ [로]로 19 Q @

The Cormack-Jolly-Seber Model

We will be using a standard model known as the Cormack-Jolly-Seber (CJS) model. For this we assume;

- 1. The population is only open to animals leaving,
- 2. All emigration during the study is permanent,
- 3. Sampling is instantaneous,
- 4. No marks are lost during the study.

4 . EL 19

メタトメミトメミト ミヒ のなべ

Cormack-Jolly-Seber Structure

The CJS model conditions on the first capture of an animal and includes parameters;

- 1. p_i , the probability of **recapture** in period *i*, $i = 2, \ldots, K$
- 2. *ϕⁱ* , the probability of **apparent/local** survival between occasions *i* and $i + 1$, $i = 1, ..., K - 1$

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ K K 用 K K E K K E K E H E YO C A

Capture Histories to Probabilities

What is the probability of capture history $\omega^* = \{1,0,1,1,0\}$?

Figure: Order of Parameter Occurence

Hence,

$$
\mathbb{P}(\omega^*) = \phi_1(1-p_2)\cdot\phi_2p_3\cdot\phi_3p_4\cdot(1-\phi_4p_5)
$$

The final survival and capture probabilities are confounded.

4 . EL 19

Likelihood Formation in MARK/RMark

The programme MARK formulates the likelihood as;

$$
\mathcal{L}(\phi, \mathbf{p} \mid \text{ Capture Histories}) = \prod_{\omega \in \Omega} \left[\mathbb{P}(\omega) \right]^{n_{\omega}}
$$

where

- \triangleright Ω is the set of possible capture histories,
- \blacktriangleright *n_ω* is the number of animals with capture history ω .
- \blacktriangleright \blacktriangler

This is solved numerically by Newton-Rhapsom.

K ロ K K 用 K K E K K E K E H E YO C A

Adding Covariates

We can model parameters as a function of environmental or individual covariates;

$$
\log\left(\frac{\phi_i}{1-\phi_i}\right) = \mathbf{x_i^T}\boldsymbol{\beta}
$$

This can be substituted into the likelihood for numerical optimisation.

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리고 K) Q (N

Random Effects

Suppose variations over time are due only to natural variance. i.e.

$$
\log\left(\frac{\phi_i}{1-\phi_i}\right)=\beta_0+\epsilon_i
$$

where:

- \triangleright β_0 is an unknown mean,
- ▶ *ϵⁱ ∼ N*(0*, σ*²) with *σ* ² known as the process or environmental variance.

This random effect motivates a switch to Bayesian inference.

K ロ K K 用 K K E K K E K E H E YO C A

Random Effects Illustration

Random Effects Simulation

We simulated capture-recapture data with a population size $N = 300$. capture occasions $K = 10$, a constant recapture rate $p = 0.5$ and survival rates such that;

$$
\log\left(\frac{\phi_i}{1-\phi_i}\right) = 1.4 + \epsilon_i
$$

where;

$$
\blacktriangleright \epsilon_i \sim N(0, 0.5)
$$

We used MCMC to make posterior draws having used the uninformative priors from [[5\]](#page-23-0);

- 1. $β_0$ \sim Un(−5, 5)
- 2. $\sigma \sim \text{Un}(0, 3)$
- 3. logit(*p*) *∼ N*(0*,* 10³)

K ロ K K 用 K K E K K E K E H E YO C A

MCMC Results

After 5000 burn in, a thinning rate of 5 applied to 100,000 posterior draws using WinBUGS, we have posterior estimates;

$$
\triangleright \hat{\beta}_0 = 1.402 \; (0.68, 2.6),
$$

▶
$$
\hat{\sigma}^2 = 0.867 (0.068, 5.94)
$$
,

$$
\blacktriangleright \hat{p} = 0.467~(0.42, 0.51)
$$

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ ▶ K 部 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 19 Q @

 E Ω

Apparent Survival Results

[Random Effects Modelling with Capture-Recapture Data](#page-0-0)

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

Multiple Random Effects

Multiple random effects used by [[3\]](#page-22-1) for multiple colonies of Puffins in the North Atlantic. Extended by [[5\]](#page-23-0) to describe **multiple species** of birds on the Isle of May.

Figure: Puffins on the Isle of May

∢ 何 ▶ -∢ 手 ▶ -∢ 手 Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

 $=$ narr

4 **EL F**

[Intro](#page-1-0) [Modelling with CJS](#page-2-0) [CJS Extensions](#page-6-0) [Multiple random effects](#page-12-0) [Conclusions](#page-19-0)

津信 めなめ

Isle of May Birds

Figure: Two Guillemots [[7](#page-24-0)] Figure: Two Razorbills [\[7\]](#page-24-0)

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

イロト イ部 トイミト イヨト

Multi-Species Model

We set up likelihoods for each species using the CJS model and proceed to fit the model;

$$
\log\left(\frac{\phi_{i,s}}{1-\phi_{i,s}}\right)=f_s(\mathbf{x_{i,s}^T})+\delta_i+\epsilon_{i,s}
$$

where

- ▶ *δⁱ ∼ N*(0*, σ*² *δ*), constant across all species,
- ▶ $\epsilon_{i,s} \sim N(0, \sigma_s^2)$ exclusive to each species.
- \blacktriangleright $f_s(\mathbf{x}_{i,s}^{\mathsf{T}})$ is a unique covariate link function for each species.

K ロ K K 用 K K E K K E K E H E YO C A

Measuring Synchrony

For each species, we define the **Intra-class correlation coefficient**;

$$
\mathsf{ICC}_{\mathsf{s}} = \frac{\hat{\sigma}_{\delta}^2}{\hat{\sigma}_{\delta}^2 + \hat{\sigma}_{\mathsf{s}}^2}
$$

- ▶ Quantifies the environmental variance shared between species,
- ▶ High synchrony *⇒* ICC*^s →* 1,
- ▶ Low synchrony *⇒* ICC*^s →* 0

K ロ > K 何 > K 로 > K 로 > 트 로 이외어

What generates Synchrony?

We can fit a model for each species with and without covariates. This gives;

- $\rightarrow \hat{\sigma}_s^2$ (res) the residual species variance from the covariate model
- $\rightarrow \hat{\sigma}_s^2$ (total) the species variance from the intercept only model

K ロ K K 用 K K E K K E K E H E YO C A

What generates Synchrony?

We can fit a model for each species with and without covariates. This gives;

 $\rightarrow \hat{\sigma}_s^2$ (res) the residual species variance from the covariate model $\rightarrow \hat{\sigma}_s^2$ (total) the species variance from the intercept only model For each species we define;

$$
\mathcal{C}_s = 1 - \frac{\hat{\sigma}_s^2(\text{res})}{\hat{\sigma}_s^2(\text{total})}
$$

- ▶ Covariates cause synchrony *⇒ C^s →* 1
- ▶ Covariates do not synchrony *⇒ C^s →* 0

K ロ K K 用 K K E K K E K E H E YO C A

Isle of May results

The results of the study on Isle of May birds were;

- ▶ Puffins: $ICC_1 = 0.894$ (0.304, 0.999), and $C_{\text{puffins}} = 0.81$
- ▶ Guillemots: $ICC_2 = 0.787$ (0.350, 0.996), and $C_{\text{quillemots}} = 0.425$
- ▶ Razorbills: $ICC_3 = 0.785$ (0.205, 0.998), and $C_{\text{razorbills}} = 0.595$

This indicates common random effects can describe a large amount of variation between species.

∢ㅁ▶ ∢@ ▶ ∢∃ ▶ ∢∃ ▶ _∃|님 እQ @

 $E|E \cap Q$

Benefits and Limitations

Benefits:

- ▶ Detects links between populations,
- ▶ Describes expected variation and environmental effects,
- ▶ Combats parameter redundancy,
- ▶ Reduces parameter number

Limitations:

- \blacktriangleright Requires data for multiple populations,
- ▶ Does not describe the synchrony source fully,
- ▶ Does not describe pairwise effects.

イロト イ母 トイヨ トイヨ ト

 $E = \Omega Q$

Further Extensions

- \triangleright Up to 4 random effects included in [[2\]](#page-22-2),
- \triangleright Used for birth rates in an Integrated Population Model by [\[4](#page-23-1)],

There are further opportunities for;

- ▶ Different parameters and model types,
- ▶ Inclusion of predators or prey,
- ▶ Assessing synchrony over time

化重新润滑脂 Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

∢ □ ▶ ⊣ *←* □

 00000000

Thank You!

K ロ ▶ K 母 ▶ K ヨ ▶ K ヨ ▶ [로] ≥ 9 Q @

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

References I

E. G. Cooch and G. C. White.

Program MARK, A Gentle Introduction. 13th edition, 2014.

M. Ghislain, T. Bonnet, U. Godeau, O. Dehorter, O. Gimenez, and P.-Y. Henry.

Synchrony in adult survival is remarkably strong among common temperate songbirds across france.

Ecology, 105(6):e4305, 2024.

V. Grosbois, M. P. Harris, T. Anker-Nilssen, R. H. McCleery, D. N. Shaw, B. J. T. Morgan, and O. Gimenez. Modeling survival at multi-population scales using mark–recapture data.

Ecology, 90(10):2922–2932, 2009.

제 로 제 제 로 제 드리고 19 Q Q

References II

畐 J. Lahoz-Monfort, M. Harris, S. Wanless, S. Freeman, and B. Morgan.

Bringing it all together: Multi-species integrated population modelling of a breeding community.

Journal of Agricultural, Biological and Environmental Statistics, 22, 04 2017.

J. J. Lahoz-Monfort, B. J. T. Morgan, M. P. Harris, S. Wanless, and S. N. Freeman.

A capture–recapture model for exploring multi-species synchrony in survival.

Methods in Ecology and Evolution, 2(1):116–124, 2011.

R. S. McCrea and B. J. T. Morgan.

Analysis of capture-recapture data.

Chapman & Hall/CRC Interdisciplinary Statistics Series. CRC Press, Boca Raton, FL, 2015.

ৰ চামৰ চাম চাচ কামাকা

References III

I. of May Bird Observatory. Isle of may bird observatory blog. https://isleofmaybirdobs.org/.

> 医阿德利阿德利 $E|E$ Ω 4 . EL 19 ∢母

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

M-arrays

We can describe our CR-data using a series of sufficient statistics within an m-array. For example, given 5 sampling occasions;

where;

- \blacktriangleright R_i is the number captured in occasion *i* and subsequently released.
- \blacktriangleright $m_{i,j}$ is the number released from occasion *i* and first recaptured in period *j*

Here,
$$
m_{i,0} = R_i - \sum_{j=i+1}^{K} m_{i,j}
$$

4 . EL 19

M-array probabilities

For notation we use;

 \triangleright ϕ_i - The probability of survival from period *i* to $i+1$

 \triangleright p_i - The probability of recapture in period *i* given the unit is alive The probability of each $m_{i,i}$ cell in the m-array is then defined as;

$$
\nu_{ij} = \left\{ \prod_{k=i}^{j-1} \phi_k \prod_{k=i+1}^{j-1} (1 - p_k) \right\} p_j \quad \text{for } i < j
$$

Similarly the probability of never being recaptured after first capture in *i* is;

$$
\chi_i = 1 - \sum_{j=i+1}^T \nu_{ij}
$$

Marriner, Howell **Marriner, Howell Controlled Act 2018** Controlled Act 2019 The University of Glasgow, STOR-i Centre for Doctoral Training

EXTERNITY IN SITE MAGA

Multinomial distributions in M-arrays

To form a likelihood, we consider each row in the M-array as a multinomial distribution. For example;

$$
\mathcal{L}_1(\phi, \mathbf{p} \mid R_1, \mathbf{m}_1) = {R_1 \choose m_{1,j}} \prod_{j=2}^5 \nu_{1j}^{m_{1,j}} \cdot \chi_1^{R_1 - \sum_{k=2}^5 m_{1,k}}
$$

where we have the multinomial coefficient;

$$
\binom{R_1}{m_{1,j}} = \frac{R_1!}{(m_{1,2})!(m_{1,3})!(m_{1,4})!(m_{1,5})!(R_1 - \sum_{j=2}^5 m_{1,j})!}
$$

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ K K 用 K K E K K E K E H E YO C A

 000000000

Multinomial Likelihood

By combining the likelihoods of each row, we get the total likelihood;

$$
\mathcal{L}(\phi, \mathbf{p} \mid \mathbf{R}_i, \mathbf{m}_{ij}) \propto \prod_{i=1}^{T-1} \prod_{j=i+1}^{T} \nu_{ij}^{m_{i,j}} \cdot \chi_i^{R_i - \sum_{j=i+1}^{T} m_{ij}}
$$

This gives us the full log-likelihood from which explicit MLEs may be found;

$$
\log \mathcal{L}(\phi, \mathbf{p} \mid \mathbf{R}_i, \mathbf{m}_{ij}) = \sum_{i=1}^T \log(\mathcal{L}_i)
$$

Marriner, Howell University of Glasgow, STOR-i Centre for Doctoral Training

K ロ K K 用 K K E K K E K E H E YO C A

 Ω

Final Probability

- \blacktriangleright The least amount of data is in the final period,
- \blacktriangleright ϵ_9 was the 6th percentile.

← ロ ▶ → 印

 0000000

 2990

그녀 말. \rightarrow

Graph with MLEs

[Random Effects Modelling with Capture-Recapture Data](#page-0-0)

Marriner, Howell Figure: MCMC Estimates, True Values and Music University of Glasgow, STOR-i Centre for Doctoral Training