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Motivation/Introduction

Capture-Recapture data is widely used by statisticians and biologists to
understand the demographics of animal populations. For example, they often
want to know how survival rates are affected by time and environmental change
for the purpose of conservation.

The Cormack-Jolly-Seber Model

The Cormack-Jolly-Seber (CJS) model for open capture-recapture data allows
estimation of;

• ϕi , the apparent survival probability between occasions i and i + 1,

• pi , the probability of recapture in occasion i

To turn capture histories into a likelihood for inference, an M-array of sufficient
statistics is constructed.

Number Released Number Recaptured Never Recaptured
R1 m1,2 m1,3 m1,4 m1,5 m1,0

R2 m2,3 m2,4 m2,5 m2,0

R3 m3,4 m3,5 m3,0

R4 m4,5 m4,0

Table 1: M-array for 5 capture occasions

We have;

• Ri animals captured in occasion i , marked and then released,

• mi ,j animals released in occasion i and first recaptured in occasion j ,

• mi ,0 animals released in occasion i and never recaptured

Each row in the m-array is modelled with a multinomial distribution so that;

mi ∼ Multi(Ri ; qi) ,

where qi is a vector of probabilities that an animal belongs to each mi ,j . For
example;

• m1,4 requires survival from occasions 1 to 4, being uncaptured in occasions 2
to 3 and capture in occasion 4. Hence, q1,4 = ϕ1(1− p2)ϕ2(1− p3)ϕ3p4.

A likelihood function can then be formed from these distributions.

Random Effects and Covariates
We can extend the CJS model by including environmental covariates xTi (e.g.
minimum winter temperature) from the time of our study and a random effects
term ϵi . We thus model;

log

(
ϕi

1− ϕi

)
= xTi β + ϵi ,

where ϵi ∼ N(0, σ2), for each i . Including these terms lets us directly model the
natural variation in apparent survival over time as well as the effect of
environmental change.

To estimate our parameters we now use MCMC as finding the MLEs would
require integrating over the random effects.
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Figure 1: True values and 95% credible intervals for ϕi from random effects MCMC

Random Effects Example

We simulated 10 capture occasions under parameters N = 300, p = 0.5 (for all
occasions), a mean apparent survival rate ϕ̄ = 0.8 (β0 = 1.38 on the logit scale)
and random variation ϵi with σ2 = 0.5.

After a 5000 sample burn-in, 95,000 posterior draws were made using WinBUGS
with a thinning rate of 5 and uninformative priors for all parameters.

• Figure 1 shows the sample median and 95% credible intervals for ϕi with their
true values,

• The MCMC sample medians for the other parameters were
β̂0 = 1.402 (0.68, 2.6), σ̂2 = 0.867 (0.068, 5.94), and p̂ = 0.467 (0.42, 0.51).

Multi-Species Modelling

It may be preferable and ecologically reasonable to simultaneously analyse more
than one species in the same spatial region. For multiple species, we can model
apparent survival rates using the model of J. J. Lahoz-Monfort et al. (2011);

log

(
ϕi ,s

1− ϕi ,s

)
= fs(x

T
i,s) + δi + ϵi ,s

Where;

• δi ∼ N(0, σ2
δ) is a random effect for all species in the region,

• ϵi ,s ∼ N(0, σ2
s ) is a random effect exclusive to species s,

• fs(xTi,s) describes the covariate response for species s.

If variation in yearly survival is intrinsic to the environment, we would expect
synchrony in species survival which is accounted for by δi . To quantify species
synchrony we can use the Intra-Class Coefficient given by;

ICCs =
σ̂2
δ

σ̂2
δ + σ̂2

s

for each species. The ICC describes the synchrony of species s by the proportion
of its total variance present in all species.

We can determine if the environmental covariates synchronise the species by
fitting the random effects model with and without covariates. We denote;

• σ̂2
s (res), the residual variance from the covariate model,

• σ̂2
s (total), the total variance from the intercept only model.

Hence, for each species (and for σ̂2
δ) we define;

Cs = 1− σ̂2
s (res)

σ̂2
s (total)

,

If the covariates explain the synchrony, we expect σ̂2
s (res) to be small relative to

σ̂2
s (total) and thus Cs to be close to 1.

Further Applications and Limitations

This multiple random effects approach can be extended for more complex
scenarios.

• Ghislain et al. (2024) implemented up to 4 random effects to account for
variance in species, migration strategy, sampling location and individuals.

• J. Lahoz-Monfort et al. (2017) incorporated multiple random effects models
into a single Integrated Population Model (IPM).

Overall, variance decomposition with random effects provides good models and
insight into the scale of multi-species synchrony. However, in this form results
should only serve as a guideline on potential causes of synchrony in ecosystems.
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