A Bandit in a Bandit Adaptive Windowing for Non-Stationary Contextual Multi-Armed Bandits

Jack Kerr 1 Theo Crookes 2

¹University of Warwick 2 Lancaster University

30/8/24

[A Bandit in a Bandit](#page-41-0) 1/20

[Motivation](#page-1-0) [UCB](#page-3-0) [Non-Stationary](#page-20-0) [Adaptive](#page-26-0)

Motivation

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 $E|E| \leq 0.98$

The End Goal

With things such as movie recommendations preferences of the users may change over time. Christmas movies are an example of this as we may want to only recommend these seasonally.

- ④ → → ヨ → → ヨ →

ミミ りょい

• Known time horizon T

 \equiv つのへ

- Known time horizon T
- There are N arms

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 $E|E| \leq 0.99$

- Known time horizon T
- **o** There are N arms
- Each arm i has some context $\mathbf{b}_i(t) \in \mathbb{R}^{d}$ attached to it

化三头

 $E|E \cap Q$

- Known time horizon T
- **o** There are N arms
- Each arm i has some context $\mathbf{b}_i(t) \in \mathbb{R}^{d}$ attached to it
- $r_i(t)$ is the reward received at time t from arm i

ミミ りょい

- Known time horizon T
- **o** There are N arms
- Each arm i has some context $\mathbf{b}_i(t) \in \mathbb{R}^{d}$ attached to it
- $r_i(t)$ is the reward received at time t from arm i
- $\boldsymbol{\mu} \in \mathbb{R}^{d}$ is the true but unknown parameter such that $\mathbb{E}[r_i(t)|\mathbf{b}_i(t)] = \mathbf{b}_i^{\mathcal{T}}(t)\boldsymbol{\mu}$

ヨョ りょり

1 Receive context for each arm: $\mathbf{b}_i(t)$

重目 のへぐ

어서 동어서 동어

-4 一句

- **1** Receive context for each arm: $\mathbf{b}_i(t)$
- \bullet Choose an arm to play: a_t

重目 のへぐ

 $\lambda \geq 1$, $\lambda \geq 1$

∢ A

- Receive context for each arm: $\mathbf{b}_i(t)$
- \bullet Choose an arm to play: a_t
- \bullet Observe the reward: $r_t = \mathbf{b}_{a_t}(t)^\mathsf{T} \boldsymbol{\mu} + \epsilon_{a_t,t}$

 $\left\{ \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right\}$

毛目 つへぐ

- Receive context for each arm: $\mathbf{b}_i(t)$
- **2** Choose an arm to play: a_t
- \bullet Observe the reward: $r_t = \mathbf{b}_{a_t}(t)^\mathsf{T} \boldsymbol{\mu} + \epsilon_{a_t,t}$
- ⁴ Update model parameters

毛目 つへぐ

 $\left\{ \begin{array}{ccc} \pm & \rightarrow & \leftarrow & \pm & \rightarrow \end{array} \right.$

- Receive context for each arm: $\mathbf{b}_i(t)$
- **2** Choose an arm to play: a_t
- \bullet Observe the reward: $r_t = \mathbf{b}_{a_t}(t)^\mathsf{T} \boldsymbol{\mu} + \epsilon_{a_t,t}$
- ⁴ Update model parameters
- **6** Repeat

 $A \equiv \mathbb{R} \cup A \equiv \mathbb{R}$

Upper Confidence Bound

At each time t , we compute the UCB value for each arm i and then choose the arm with the highest UCB value.

 $UCB_i(t) =$ Estimated Reward + Uncertainty

. **.** .

ミミ りょい

Upper Confidence Bound

At each time t , we compute the UCB value for each arm i and then choose the arm with the highest UCB value.

 $UCB_i(t) =$ Estimated Reward + Uncertainty

Upper Confidence Bound

At each time t , we compute the UCB value for each arm i and then choose the arm with the highest UCB value.

$$
UCB_i(t) = \mathbf{b}_i^T(t)\hat{\boldsymbol{\mu}}(t) + \alpha \sqrt{\mathbf{b}_i^T(t)B(t)^{-1}\mathbf{b}_i(t)}
$$

Where,

$$
B(t) = \lambda \mathbf{I}_d + \sum_{k=1}^{t-1} \mathbf{b}_{a_k}(k) \mathbf{b}_{a_k}^T(k)
$$

$$
\hat{\boldsymbol{\mu}}(t) = B(t)^{-1} \sum_{k=1}^{t-1} \mathbf{b}_{a_k}(k) r_k
$$

- ← 何 ト → ヨ ト → ヨ ト

重目 のへぐ

Regret is a way to measure the performance of contextual multi-armed bandit algorithms where the goal is to minimise the total regret over the time horizon T.

Regret is a way to measure the performance of contextual multi-armed bandit algorithms where the goal is to minimise the total regret over the time horizon T.

$$
\mathcal{R}(\mathcal{T}) = \sum_{t=1}^{\mathcal{T}} \mathbf{b}_{a_t^*}^{\mathcal{T}}(t)\, \boldsymbol{\mu} - \mathbf{b}_{a_t}^{\mathcal{T}}(t)\, \boldsymbol{\mu}
$$

- a_t^* represents the best arm at time t
- a_t represents the arm chosen at time t

Example Iteration

4 個

u₁ Values

ミョ つへぐ

[Motivation](#page-1-0) [UCB](#page-3-0) [Non-Stationary](#page-20-0) [Adaptive](#page-26-0)

Example Iteration

4 個

u₁ Values

ミミ つへぐ

We now focus on the case where $\mu(t)$ is a function of time. As in the last example:

$$
\mu(t) = (\mu_1(t), \mu_2(t))
$$

$$
\mu_1(t) = 0.9
$$

$$
\mu_2(t) = 2\frac{t}{\mathcal{T}}
$$

目目 つすび

We now focus on the case where $\mu(t)$ is a function of time. As in the last example:

$$
\mu(t) = (\mu_1(t), \mu_2(t))
$$

$$
\mu_1(t) = 0.9
$$

$$
\mu_2(t) = 2\frac{t}{\mathcal{T}}
$$

We have 2 main ways to deal with these cases,

- **1** Discounting
- ² Sliding Window

Sliding window methods involve only using information from at most τ time steps ago to estimate $\mu(t)$.

 \equiv

Sliding Window Algorithm

The SW-UCB algorithm is very similar to the standard UCB algorithm with some slight changes to the estimates of $\boldsymbol{\hat{\mu}}(t)$ and $B_t.$ We instead have:

$$
UCB_i(t) = \mathbf{b}_i^T(t)\hat{\boldsymbol{\mu}}_{\tau}(t) + \alpha \sqrt{\mathbf{b}_i^T(t)B_{\tau}^{-1}(t)\mathbf{b}_i(t)}
$$

Where,

$$
B_{\tau}(t) = \lambda \mathbf{I}_{d} + \sum_{k=max(1,t-\tau)}^{t-1} \mathbf{b}_{a_k}(k) \mathbf{b}_{a_k}^T(k)
$$

$$
\hat{\boldsymbol{\mu}}_{\tau}(t) = B_t^{-1} \sum_{k=max(1,t-\tau)}^{t-1} \mathbf{b}_{a_k}(k) r_k
$$

The first problem with these 2 methods is that you need prior knowledge of the behaviour of $\mu(t)$ to pick the optimal window size.

The second problem with sliding window methods is that they cannot change their window size as time goes on to adapt to a new environment.

 \equiv

We now want to be able to adaptively choose window sizes while we use a SW-UCB algorithm to select which arm to play.

(K) 4 로 K 4 로 K

重目 のへぐ

We now want to be able to adaptively choose window sizes while we use a SW-UCB algorithm to select which arm to play.

Define a maximum window size M

. . . 3 . . 3 .

 $E|E \cap Q$

We now want to be able to adaptively choose window sizes while we use a SW-UCB algorithm to select which arm to play.

- Define a maximum window size M
- Define the set of possible window sizes $M = \{10, 20, \ldots, M 10, M\}$

目目 のなね

. . . 3 . . 3 .

We now want to be able to adaptively choose window sizes while we use a SW-UCB algorithm to select which arm to play.

- Define a maximum window size M
- Define the set of possible window sizes $M = \{10, 20, \ldots, M 10, M\}$

We then implement 2 different ways to pick a window size at each time point and assess how good it performs in relation to other window sizes.

∢ @ ▶ ४ 로 ▶ ४ 로 ▶ (로)님 (9) Q ⊙

Hedging relies on each window size having some probability of being sampled and then updating this probability based on its performance. Hedging relies on each window size having some probability of being sampled and then updating this probability based on its performance.

$$
\textrm{1: Set}\ \mathit{W}_1=\textbf{1}\in\mathbb{R}^N, \textbf{x}_1=\tfrac{1}{N}\mathit{W}_1
$$

2: Play according to UCB for the first M iterations

3: for all
$$
t = M + 1, ..., T
$$
 do

- 4: Sample $\tau \sim \{10, 20, 30, ..., M\}$, $\mathbb{P}(\tau = i) = \mathbf{x}_t$
- 5: Observe the reward r_t from playing according to SW-UCB with window size τ
- 6: Compute the loss given by some function $\mathbf{g}(r_t, r_{t-1})$
- 7: Update Weights $W_t(\tau) = W_{t-1}(\tau) e^{\mathbf{g}(r_t,r_{t-1})}$
- 8: Set $\mathbf{x}_t = \frac{W_t}{\sum_i W_i}$ $j W_t(j)$
- 9: end for

《何》 《月》 《月》 月日 9000

This method involves using a ϵ -Greedy (ish) Bandit inside of the SW-UCB algorithm to choose the window size.

This method involves using a ϵ –Greedy (ish) Bandit inside of the SW-UCB algorithm to choose the window size.

- 1: Set $\beta_i = 0, P_{i,t} = 0 \ \forall i \in \{10, 20, ..., M\}$
- 2: Play according to UCB for the first M iterations

3: for all
$$
t = M + 1, \ldots, T
$$
 do

- 4: Either choose a random window size τ w.p ϵ or choose the window size with the largest β value.
- 5: Observe the reward r_t from playing according to SW-UCB with window size τ
- 6: Update the number of times τ has been used
- 7: Update β_{τ}
- 8: end for

Update Rule

$$
\beta_{\tau} = \beta_{\tau} \left(1 - \frac{1}{P_{\tau,t}} \right) + \frac{\left((r_t - r_{t-1}) - \frac{1}{|S_{\tau,t}|} \sum_{s \in S_{\tau,t}} (r_s - r_{s-1}) \right)}{P_{\tau,t}}
$$

Where,

$$
P_{\tau,t} = \{ \# \text{ of times } \tau \text{ has been used up to time } t \}
$$

$$
S_{\tau,t} = \{ i \in \{1, \dots, t\} \mid w_i \neq \tau \}
$$

 $E|E| \leq 0.99$

イロト イ部 トイヨ トイヨト

One way to speed up the learning process is to update each window size that would have also chosen the arm the chosen window size did with a certain weighting.

One way to speed up the learning process is to update each window size that would have also chosen the arm the chosen window size did with a certain weighting.

A constant proportion of the reward.

R 三下

 $E|E \cap Q$

One way to speed up the learning process is to update each window size that would have also chosen the arm the chosen window size did with a certain weighting.

- A constant proportion of the reward.
- If n other window sizes would have selected arm a_t give each of them arms $1/n$ of the reward.

目目 のなね

Mass Update

One way to speed up the learning process is to update each window size that would have also chosen the arm the chosen window size did with a certain weighting.

- A constant proportion of the reward.
- If n other window sizes would have selected arm a_t give each of them arms $1/n$ of the reward.
- \bullet Define a metric to represent the distance (d) each window is from the chosen one and give them $1/d$ of the reward.

Linear

−1.5 −1.0 −0.5 0.0 0.5 0 250 500 750 1000 Time Value µ1 1 **−0.50 −0.25 0.00 0.25 0.50 0 250 500 750 1000 Time Value** µ2 1

$$
\mu^{1}(t) = (\mu_{1}^{1}(t), \mu_{2}^{1}(t))
$$

$$
\mu_{1}^{1}(t) = 0.5 - 2\frac{t}{\tau}
$$

$$
\mu_{2}^{1}(t) = -0.5 + \frac{t}{\tau}
$$

[Motivation](#page-1-0) **[Adaptive](#page-26-0) COVID COVIDENT** [Non-Stationary](#page-20-0) **Non-Stationary Adaptive Adaptive**

[A Bandit in a Bandit](#page-0-0) $30/8/24$ 20 / 20

Linear

Average Cumulative Regret per Window Size 100 Mass ε–Gr s Hedging 80 Cumulative Regret Cumulative Regret 60 $40 \begin{array}{c}\n20 \\
\hline\n0\n\end{array}$ 0 50 50 100 150 250 2[20](#page-39-0)[0](#page-41-0) [2](#page-42-0)[50](#page-0-0) 2990 Window Size [A Bandit in a Bandit](#page-0-0) $30/8/24$ 20 / 20

Gi-Soo Kim, Young Suh Hong, Tae Hoon Lee, Myunghee Cho Paik, and Hongsoo Kim.

Bandit-supported care planning for older people with complex health and care needs, 2023.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire.

A contextual-bandit approach to personalized news article recommendation, April 2010.

Any Questions?

K ロ ▶ K 御 ▶ K 로 ▶ K 로 ▶ 그로 ⊞ 19 Q @

Any Questions? James?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 그룹 N 이익CM

Discounting

The discounting method multiplies all past information by some constant λ to reduce their impact on the current estimate for $\mu(t)$ and place a higher weight on more recent information.

*

Loss Functions

$$
\mathbf{g}(r_t, r_{t-1}) = \begin{cases} \arctan(r_t - r_{t-1}) & \text{if } r_t - r_{t-1} \geq 0\\ \frac{1}{2}(r_t - r_{t-1}) & \text{otherwise} \end{cases}
$$

4 f →

ミョ つへぐ

Changing

$$
\mu^{2}(t) = (\mu_{1}^{2}(t), \mu_{2}^{2}(t))
$$
\n
$$
\mu_{1}^{2}(t) = \begin{cases}\n0.5 & \text{if } t \leq \frac{1}{2}T \\
\sin(6\pi \frac{t}{T}) & \text{Otherwise} \\
\mu_{2}^{2}(t) = \begin{cases}\n-0.2 & \text{if } t \leq \frac{1}{2}T \\
\cos(9\pi \frac{t}{T}) & \text{Otherwise}\n\end{cases}\n\end{cases}
$$

Changing

Algorithm 1 UCB

Input: Time horizon T, regularization parameter λ , exploration parameter α Initialisation: $B = \lambda I_d$, $\hat{\mu} = 0_d$, $f = 0_d$ 1: for $t = 1, 2, ..., T$ do 2: for all $a \in A$ do 3: $p_a(t) = \mathbf{b}_a^T(t)\hat{\mu}(t) + \alpha \sqrt{\mathbf{b}_a^T(t)B_t^{-1}\mathbf{b}_a^T(t)}$ 4: **end for**
5: Choose 5: Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t
6: Update $B = B + \mathbf{b}_{a_t}(t) \mathbf{b}_{a_t}^T(t)$
7: $\mathbf{f} = \mathbf{f} + \mathbf{b}_{a_t}(t) r_t$ 6: Update $B = B + \mathbf{b}_{a_t}(t)\mathbf{b}_{a_t}^T(t)$ 7: ${\bf f} = {\bf f} + {\bf b}_{a_t}(t) r_t$ 8: $\hat{\mu} = B^{-1}f$ 9: end for

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ (ヨ 出) の Q (N

Algorithm 2 Discounted UCB

9: end for

Input: Time horizon T, regularization parameter λ , exploration parameter α , discount rate η Initialisation: $B = \lambda I_d$, $\hat{\mu} = 0_d$, $f = 0_d$ 1: for $t = 1, 2, ..., T$ do 2: for all $a \in A$ do 3: $p_a(t) = \mathbf{b}_a^T(t)\hat{\mu}(t) + \alpha \sqrt{\mathbf{b}_a^T(t)B_t^{-1}\mathbf{b}_a^T(t)}$ 4: **end for**
5: Choose 5: Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t
6: Update $B = \eta B + \mathbf{b}_{a_t}(t) \mathbf{b}_{a_t}^T(t)$ 6: Update $B = \eta B + \mathbf{b}_{a_t}(t) \mathbf{b}_{a_t}^T(t)$ 7: ${\bf f} = \eta {\bf f} + {\bf b}_{a_t}(t) r_t$ 8: $\hat{\mu} = B^{-1}f$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ (ヨ 出) の Q (N

Algorithm 3 SW-UCB

Input: Time horizon T, regularization parameter λ , exploration parameter α Initialisation: $B = \lambda I_d$, $\hat{\mu} = 0_d$, $f = 0_d$

1: for $t = 1, 2, ..., T$ do 2: for all $a \in A$ do 3: $p_a(t) = \mathbf{b}_a^T(t)\hat{\mu}(t) + \alpha \sqrt{\mathbf{b}_a^T(t)B_{t,\tau}^{-1}\mathbf{b}_a^T(t)}$ 4: end for
5: Choose 5: Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t
6: Calculate B_{t+1} and \hat{u} $(t+1)$ $6: \qquad$ Calculate $B_{t+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau} (t+1)$ $7⁺$ end for

$$
B_{t,\tau} = \lambda I_d + \sum_{k=max(1,t-\tau)}^{t-1} \mathbf{b}_{a_k}(k) \mathbf{b}_{a_k}^T(k)
$$

$$
\hat{\mu}_{\tau}(t) = B_{t,\tau}^{-1} \sum_{k=max(1,t-\tau)}^{t-1} \mathbf{b}_{a_k}(k) r_k
$$

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ (ヨ) ≒ ⊙ ٩ ⊙

Algorithm 4 Hedged Sliding Window UCB

Input: Time horizon T, regularization parameter λ , exploration parameter α , max window size M Initialisation: $B_1 = \lambda I_d$, $W_1 = \mathbf{1} \in \mathbb{R}^N$, $\mathsf{x}_1 = \frac{1}{N} W_1$, $\hat{\mu} = \mathbf{0}_d$, $\tau = M$ 1: for $t = 1, 2, ..., M$ do 2: for all $a \in A$ do 3: $p_a(t) = \mathbf{b}_a^{\mathsf{T}}(t)\hat{\mu}_{\tau}(t) + \alpha \sqrt{\mathbf{b}_a^{\mathsf{T}}(t)\mathbf{B}_{t,\tau}^{-1}\mathbf{b}_a^{\mathsf{T}}(t)}$ 4: **end for**
5: Choose 5: Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t
6: Compute B_{t+1} and \hat{u} $(t+1)$ 6: Compute $B_{t+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau}(t+1)$ 7: end for 8: Sample $\tau \sim \{10, 20, 30, ..., M\}$, $\mathbb{P}(\tau = i) = \mathbf{x}_1$ 9: Compute $B_{M+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau}(M+1)$ 10: for $t = M + 1, M + 2, ..., T$ do 11: for all $a \in A$ do 12: $p_a(t) = \mathbf{b}_a^T(t)\hat{\mu}_{\tau}(t) + \alpha \sqrt{\mathbf{b}_a^T(t) \mathbf{B}_{t,\tau}^{-1} \mathbf{b}_a^T(t)}$ 13: end for 14: Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t
15: Observe reward $g(r_t, r_{t-1})$ Observe reward $g(r_t, r_{t-1})$ 16: Update Weights $W_t(\tau) = W_{t-1}(\tau) e^{g(r_t,r_{t-1})}$ 17: Set $\mathbf{x}_t = \frac{W_t}{\sum_j W_t(j)}$ 18: Sample $\tau \sim \{10, 20, 30, ..., M\}$, $\mathbb{P}(\tau = i) = \mathbf{x}_t$ 19: Compute $B_{t+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau}(t+1)$ 20: end for

Algorithm 5 ϵ -Greedy Sliding Window UCB

Input: Time horizon T, regularization parameter λ , exploration parameter α , exploration rate ϵ , max window size M

Initialisation: $B(1) = \lambda \mathbf{I}_d$, $\hat{\mu}(1) = \mathbf{0}_d$, $\tau = M$, $P_i = 0$, $\beta_i = 0$ $\forall i$ 1: for $t = 1, 2, ..., M$ do 2.5 for all $a \in \mathcal{A}$ do $p_a(t) = \mathbf{b}_a^T(t)\hat{\boldsymbol{\mu}}_{\tau}(t) + \alpha \sqrt{\mathbf{b}_a^T(t)\mathbf{B}_{t,\tau}^{-1}\mathbf{b}_a^T(t)}$ $3:$ $4:$ end for $5:$ Choose arm $a_t = \arg \max_{a \in A} p_a(t)$ and observe a real-valued payoff r_t $6:$ Compute $B_{t+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau}(t+1)$ 7: end for 8: Set

$$
\tau = \begin{cases} & \text{Random size} \\ & \text{arg max}_{a \in \mathcal{A}} \beta_a \\ & \text{w.p } 1 - \epsilon \end{cases}
$$

9: Compute
$$
B_{M+1,r}
$$
 and $\hat{\mu}_{\tau}(M+1)$
\n10: for $t = M + 1, M + 2, ..., T$ do
\n11: f for all $a \in A$ do
\n12: $p_a(t) = \mathbf{b}_a^T(t)\hat{\mu}_{\tau}(t) + \alpha \sqrt{\mathbf{b}_a^T(t)\mathbf{B}_{t,r}^{-1}\mathbf{b}_a^T(t)}$
\n13: **end for**
\n14: Choose $\text{and} \mathbf{b}$
\n15: Update $P_r = P_r + 1$
\n16: Update $\beta_{\tau} = \beta_{\tau} \left(1 - \frac{1}{P_{\tau}}\right) + \frac{\left((r_t - r_{t-1}) - \frac{1}{|S_{\tau,t}|}\right)\sum_{s \in S_{\tau,t}} (r_s - r_{s-1})}{17}$
\n17: Set
\n
$$
\tau = \left\{\begin{array}{cc}\text{Random size} & \text{w.p. } \epsilon \\ \text{arg } \max_{a \in A} \beta(a) & \text{w.p. } 1 - \epsilon\end{array}\right.
$$

Compute $B_{t+1,\tau}$ and $\hat{\boldsymbol{\mu}}_{\tau}(t+1)$ 18: 19: end for

 $= \Omega Q$