[Introduction](#page-1-0) [SIR and Extensions](#page-3-0) [Inference](#page-8-0) [Ward Simulation](#page-12-0) [Conclusion](#page-16-0) [References](#page-17-0)

Stochastic Epidemic Modelling STOR-i Summer Research Project

Evie Miller¹ James Neill²

¹Physics Department Lancaster University

²STOR-i Centre for Doctoral Training Lancaster University

30th August 2024

 Ω

Miller, Neill STOR-i

[Epidemiology](#page-17-0)

Introduction

Coronavirus Map. Image Credit: VK Studio/Shutterstock.com

メロメ メタメ メモメ メモメ

 299

▶ Create a simulation of the general stochastic SIR epidemic and its extensions.

メロメ メタメ メミメ

- ▶ Work on epidemic inference using Bayesian statistics
- ▶ Design a model for a ward to include spatial structure

The population is divided into three categories:

- Susceptible (S) Individuals who are not yet infected.
- Infectious (I) Individuals who are currently infected with the pathogen and can transmit it to others.
- \circ Recovered (R) Individuals previously infected with the pathogen, but no longer transmit it, and are now immune.

$$
\text{Susceptible} \xrightarrow{\beta I(t)} \text{Infections} \xrightarrow{\gamma} \text{Recovered}
$$

 \rightarrow \overline{m} \rightarrow \rightarrow \overline{m} \rightarrow

nar

[Introduction](#page-1-0) **[SIR and Extensions](#page-3-0)** [Inference](#page-8-0) [Ward Simulation](#page-12-0) [Conclusion](#page-16-0) [References](#page-17-0)
0000 0000 0000 0000 0000 0000

SIR Model Equations

• Infection Rate (β) : Determines how easily the disease spreads.

$$
\mathbb{P}(\text{Inflection}) = 1 - \exp(-\beta I(t-1))
$$

Recovery Rate (y) : Determines recovery time of infected individuals.

$$
\mathbb{P}\big(\mathsf{Recovery}\big) = 1 - \exp\left(-\gamma\right)
$$

 \blacktriangleright Basic Reproduction Number (R₀)

$$
R_0 = \frac{\beta}{\gamma}
$$

メロトメ 御 トメ ミトメ ミト

SIR Plot

Figure: Stochastic SIR Model with Indi[vid](#page-4-0)[ua](#page-6-0)[l](#page-4-0) [Tr](#page-5-0)[a](#page-6-0)[ck](#page-2-0)[i](#page-3-0)[n](#page-7-0)[g](#page-8-0)

 299

É

Extensions of the SIR Model - SEIRS

The SEIRS model extends the SIR model and exhibits periodicity due to waning immunity over time. It also introduces a latency period where an individual carries the pathogen but is not infectious.

[Introduction](#page-1-0) **[SIR and Extensions](#page-3-0)** [Inference](#page-8-0) [Ward Simulation](#page-12-0) [Conclusion](#page-16-0) [References](#page-17-0)
00 0000 0000 0000 0000 0000

SEIRS Plot with a Varying Population

Figure: Stoc[h](#page-3-0)astic SEIRS Model with Birth a[nd](#page-8-0)[De](#page-7-0)[a](#page-8-0)[t](#page-2-0)h [r](#page-7-0)a[te](#page-2-0)[s](#page-3-0)

 299

Inference with Random-Walk Metropolis MCMC

If given infection time data, Markov chain Monte Carlo (MCMC) methods can be applied to infer the rates of infection and recovery.

メロメ メ御 メメ きょ メモメ

 Ω

Inference with Random-Walk Metropolis MCMC

To estimate β and γ , the Random-Walk Metropolis algorithm is applied:

[Introduction](#page-1-0) [SIR and Extensions](#page-3-0) [Inference](#page-8-0) [Ward Simulation](#page-12-0) [Conclusion](#page-16-0) [References](#page-17-0)

- **Proposal:** New β and γ values proposed from normal distributions centered at current values, with standard deviations λ_{β} and λ_{γ} .
- ▶ Acceptance: A proposed value is accepted based on:

$$
\log(\alpha_\theta) = \log\Pi(\theta_\text{proposed}|X) - \log\Pi(\theta_\text{current}|X)
$$

where θ is β or γ , and $\Pi(\theta|X)$ is the posterior distribution of θ .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 Ω

Adaptive Tuning: Every 100 iterations, λ_{β} and λ_{γ} are adjusted to maintain a 30% acceptance rate.

Trace Plots and Histograms

Figure: Beta Trace Plot

Figure: Beta Histogram

K ロ ▶ K 御 ▶ K 唐 ▶

一 (語)

 QQ

Miller, Neill STOR-i

[Epidemiology](#page-0-0)

Trace Plots and Histograms

Figure: Gamma Trace Plot

Histogram of Gamma Values

メロメ メ御 メメ きょ メモメ

Ward Layout

Figure: Layout of Aintree war[d 1](#page-11-0)78 8 19 11 12 12 12 12 12 12 13 14 14 15 16 17 18 18 19 19 10 10 11 12 13 14 15 16 17 18 18 19 10 10 11 12 13 14 15 16 16 16 17 18 18 19 10 11 12 13 14 15 15 16 16 17 18 18 19 10 11 12 13 14

[Introduction](#page-1-0) [SIR and Extensions](#page-3-0) [Inference](#page-8-0) [Ward Simulation](#page-12-0) [Conclusion](#page-16-0) [References](#page-17-0)

Calculation of Infectious Pressure with Distance

$$
\lambda(t)_j = \beta_1 \sum_{i=1}^N I(t)_i f(D_{ij}) + \beta_2 \sum_{i=1}^N r_{ij} I_i(t)
$$

Whole Ward
Individual Room

| hdividual Room

メロト メタト メミト メミト

- \blacktriangleright $\lambda(t)$ = infection rate (pressure)
- \triangleright β = infection parameter
- $I(t)$ = vector of infection status
- \blacktriangleright $f(D) =$ distance function
- \blacktriangleright $r =$ indicator if in the same room

Application to Aintree ward 17B

Figure: SEIR Model of Aintree ward 17B with random room allocation, assuming 30 patients.

Figure: Time of infection against Euclidean distance from room of the initially infected individual.

メロト メタト メミト メミト

Time of Infection vs. Euclidean Distance from Initially Infected Person

Miller, Neill STOR-i [Epidemiology](#page-0-0)

メロト メ御 トメ ヨ トメ ヨト

 299

э

Model Summary

- ▶ Discrete Time
- ▶ Stochastic
- ▶ Markov Chain
- ▶ Agent-Based
- ▶ Spatial Structure

- ▶ Stochastic epidemic models provide insight into how infectious diseases spread in various settings.
- ▶ The Random-Walk Metropolis MCMC algorithm enables estimation of model parameters, such as infection and recovery rates, from observed data.

イロト イ押 トイヨ トイヨト

 Ω

▶ The application to Aintree Ward 17B demonstrates the utility of these models in hospital settings, aiding in understanding and controlling outbreaks.

- [1] Held, L., Hens, N., O'Neill, P., Wallinga, J. (2019). Handbook of Infectious Disease Data Analysis
- [2] Hospital records, Ward 17B at Aintree Hospital.
- [3] Gelman, A., Gilks, W. R., and Roberts, G. O. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms
- [4] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines
- [5] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications

 Ω

メロト メタト メミト メミト