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Introduction

Stochastic epidemic modelling uses statistical models to understand
how infectious pathogens might spread within a population.
The standard stochastic epidemic model (the SIR model) and exten-
sions of it are used to simulate an outbreak. If we have infection time
data, Markov chain Monte Carlo (MCMC) methods can be applied
to infer the rates of infection and recovery.
As part of the TRACS-Liverpool project (an initiative focused on
tracking antimicrobial resistance in care settings across Liverpool),
a model has been designed for various hospital and care settings,
specifically shown here for Aintree ward 17B.

SIR Model

The population is divided into three categories:

◦ Susceptible (S) – Individuals who are not yet infected.
◦ Infective (I) – Individuals who are currently infected with

the pathogen and can transmit it to others.
◦ Recovered (R) – Individuals previously infected with the

pathogen, but no longer transmit it, and are now immune.
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Stochastic SIR Model with Individual Tracking
Infection Rate (β): Determines how easily the disease spreads.
The probability of a susceptible individual getting infected at time t
is given by: P(Infection) = 1 − exp (−β × I [t − 1]).
Recovery Rate (γ): Determines recovery time of infected individu-
als. The constant probability of recovery: P(Recovery) = 1−exp (−γ)
At each time step, the model updates the state of each individual.
Binomial probabilities randomly determine if they become infected
or recover, and the dynamics of the population over time is produced.

Extensions of the SIR Model - SEIRS

Susceptible(S) Exposed(E) Infectious(I) Recovered(R)
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The SEIRS model accounts for susceptibility, exposure, infection,
recovery, and the potential for immunity loss, along with population
changes due to births and deaths. Transitions between stages are
governed by the rates outlined above.

Inference with Random Walk Metropolis MCMC

To estimate β and γ, Random Walk Metropolis is applied:
- Proposal: New β and γ values proposed from normal distributions
centered at current values, with standard deviations λβ & λγ.
- Acceptance: A proposed value is accepted based on:

log(αθ) = log Π(θproposed|X) − log Π(θcurrent|X)
where θ is β or γ, and Π(θ|X) is the posterior distribution of θ.

- Adaptive Tuning: Every 100 iterations, proposed standard
deviations λβ & λγ are adjusted to maintain a 30% acceptance rate.
- Trace Plots and Histograms: The evolution of β and γ over
2000 iterations is visualised using trace plots, and their distributions
are displayed with histograms.
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Trace Plot of Beta over MCMC Iterations
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Trace Plot of Gamma over MCMC Iterations
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The Random Walk Metropolis MCMC efficiently estimates stochastic
SIR model parameters by exploring the parameter space and adap-
tively tuning the proposal distribution. This MCMC is conditional
on full knowledge of infection and recovery times.

Hospital Ward Simulation
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Stochastic SEIR Model of Aintree Ward 17B

SEIR Model of Aintree ward
17B assuming 20 patients,
room allocation is random.
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Time of Infection vs. Euclidean Distance from Initially Infected Person

Time of infection against
Euclidean distance from room
of initially infected individual.

The model for Aintree ward 17B incorporates the distance between
rooms using an inverse square law to simulate infection spread be-
tween individuals. To handle cases where the distance is zero, the
infection rate, β, is set higher at 0.3 for patients in the same room
compared to 0.1 for those in different rooms. As shown in the
distance-time plot, the model behaves as expected, with patients fur-
ther apart becoming infected later. This suggests that the model can
simulate an epidemic in a ward like this when real data is available.
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