

Arc Routing Problems

Solving small-scale vehicle routing problems for waste collection

Summer Project by Katharina Limbeck Supervised by Thu Dang

Structure

- Graph Theory Euler Cycles
- Types of Arc Routing Problems
- Complexity Classes
- Exact solutions for the Chinese Postman Problem
- Integer Linear Programming and Optimisation
- · Solutions in C#
- · Further Areas of Interest

Königsberg Bridge Problem

Problem: Find a walk through the town that crosses each bridge exactly once. **Euler's Theorem:** A connected undirected graph has an Euler cycle if and only if every vertex has even degree.

Arc Routing Problems

- find a set of cycles that cover all required edges $R \subseteq E$
- start and end at depot vertex
- minimize the total distance travelled

Chinese Postman Problem

- 1 cycle
- -R = E

Rural Postman Probem

- 1 cycle
- $R \subset E$

Capacitated Arc Routing

- find a number of vehicle tours
- each vehicle capacity W
- satisfy demand for each edge

Capacitated CPP

- edge demand > 0

CARP

- edge demand ≥ 0

Complexity

Exact Solutions to the CPP

Integer Linear Programming

Integer Linear Programming:

- optimize objective function
- requirements as linear relationships
- some variables restricted to be integer
- NP-complete

Branch and Cut Algorithm:

- solve without integer constraints
- cutting plane algorithm
- branch and bound into multiple sub-problems

Step 1: Find the minimum-cost augmentation:

Minimize

$$\sum_{(v_i, v_j) \in E} c_{ij} x_{ij} \tag{1}$$

subject to

$$(v_i,v_j)\in A(S)$$

$$x_{ij} \geq 0 \qquad ((v_i, v_j) \in E)$$

$$x_{ij}$$
 integer $((v_i, v_j) \in E)$

 $\sum x_{ij} \ge 1$ $(S \subset V, S \text{ odd})$

•
$$x_{ij}$$
, the number of times the edge (v_i, v_j) is used in the solution so the number of copies of each edge added to augment the graph

$$A(S)$$
, all edges between the vertex set $S \subset V$ and its complement $A(S) = \{(v_i, v_j); v_i \in S, v_j \in V \setminus S \text{ or } v_j \in S, v_i \in V \setminus S\}$

(1)

(2)

(3)

(4)

Some of the proper odd vertex subsets S:

Apply the constraint from equation (2) to all of them. Here is an example choosing one possible subset:

$$S = \{2, 1\}$$

 $A(S) = \{(1,4); (1,3); (2,3)\}$
 $x_{13} + x_{14} + x_{23} \ge 1$

Constraint $\sum_{(v_i,v_i)\in A(S)} x_{ij} \geq 1$ for

- all proper odd subsets S with 1 element
- works well for very small examples

But this algorithm doesn't give an optimal solution for more complicated examples like this one.

Step 1: Creating an algorithm to solve constraint (2) for

- all proper odd subsets with 1 element
- all possible combinations of k elements of the vertex set $(2 \le k \le n-2)$ where the combination is an odd subset

Step 2: Find an Euler Cycle in the augmented graph using Fleury's Algorithm

- 1. Start at an arbitrary vertex v_i traverse an edge (v_i, v_j) that is not a bridge and erase edge (v_i, v_j)
- 2. Set $v_i := v_j$ and repeat step 1 starting from v_j or stop if all edges have been deleted.

Other Areas of Interest

- Consider other types arc routing problems
 - mixed or directed graphs
 - capacitated problems
 - extend constraints to practical problems
- · Solving large-scale instances quickly and reliably
 - Trade-off between quality of solution and running time
 - Consider best ways to relax constraints
 - Find good heuristic algorithms and upper bounds
 - Find good lower bounds on the optimal solution

References

- A. Corberan G. Laporte (2014) Arc Routing: Problems, Methods, and Applications. Philadelphia, PA: SIAM.
- 2. B.L. Golden R.T. Wong (1981) Capacitated arc routing problems. Networks, 11, 305-15.
- 3. D. Ahr (2004) Contributions to Multiple Postmen Problems. PhD dissertation, Department of Computer Science, Heidelberg University.
- 4. Rafael Martinelli (2013) Improved bounds for large scale capacitated arc routing problem. Computers Operations Research, 40, 2145–2160.
- 5. H. A. Eiselt, Michel Gendreau, Gilbert Laporte, (1995) Arc Routing Problems, Part I: The Chinese Postman Problem. Operations Research 43(2):231-242.
- 6. H. A. Eiselt, Michel Gendreau, Gilbert Laporte, (1995) Arc Routing Problems, Part II:

 OThe Rural Postman Problem. Operations Research 43(3):399-414.
- And Methods and Programming. Paris XI; Ecole Nationale Superieure des Mines de Paris, Universite Paris Sud.