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Königsberg Bridge Problem
Problem: Find a walk through the town that crosses each bridge exactly once.
Euler’s Theorem: A connected undirected graph has an Euler cycle if and only
if every vertex has even degree.
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Arc Routing Problems
- find a set of cycles that cover all required edges R ⊆ E
- start and end at depot vertex
- minimize the total distance travelled

Chinese Postman Problem
- 1 cycle
- R = E

Rural Postman Probem
- 1 cycle
- R ⊂ E
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Capacitated Arc Routing
- find a number of vehicle tours
- each vehicle capacity W
- satisfy demand for each edge

Capacitated CPP
- edge demand > 0

CARP
- edge demand ≥ 0
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Complexity
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Exact Solutions to the CPP
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Integer Linear Programming
Integer Linear Programming:
- optimize objective function
- requirements as linear relationships
- some variables restricted to be integer
- NP-complete

Branch and Cut Algorithm:
- solve without integer constraints
- cutting plane algorithm
- branch and bound into multiple
sub-problems
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Step 1: Find the minimum-cost augmentation:

Minimize ∑
(vi,vj)∈E

cijxij (1)

subject to ∑
(vi,vj)∈A(S)

xij ≥ 1 (S ⊂ V, S odd) (2)

xij ≥ 0 ((vi, vj) ∈ E) (3)

xij integer ((vi, vj) ∈ E) (4)

• xij, the number of times the edge (vi, vj) is used in the solution
so the number of copies of each edge added to augment the graph

• A(S), all edges between the vertex set S ⊂ V and its complement

A(S) = {(vi, vj); vi ∈ S, vj ∈ V \ S or vj ∈ S, vi ∈ V \ S}
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Some of the proper odd vertex subsets S:

Apply the constraint from equation (2) to all of them.
Here is an example choosing one possible subset:
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Constraint
∑

(vi,vj)∈A(S) xij ≥ 1 for

• all proper odd subsets S with 1 element

• works well for very small examples
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But this algorithm doesn’t give an optimal solution for more complicated
examples like this one.
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Step 1: Creating an algorithm to solve constraint (2) for
• all proper odd subsets with 1 element
• all possible combinations of k elements of the vertex set (2 ≤ k ≤ n− 2)
where the combination is an odd subset
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Step 2: Find an Euler Cycle in the augmented graph using Fleury’s Algorithm
1. Start at an arbitrary vertex vi traverse an edge (vi, vj) that is not a bridge and

erase edge (vi, vj)
2. Set vi := vj and repeat step 1 starting from vj or stop if all edges have been

deleted.
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Other Areas of Interest
• Consider other types arc routing problems
– mixed or directed graphs
– capacitated problems
– extend constraints to practical problems

• Solving large-scale instances quickly and reliably
– Trade-off between quality of solution and running time
– Consider best ways to relax constraints
– Find good heuristic algorithms and upper bounds
– Find good lower bounds on the optimal solution
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