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Abstract

Nonlinear models of deviations from PPP have recently provided an impor-
tant, theoretically well motivated, contribution to the PPP puzzle. Most of
these studies use temporally aggregated data to empirically estimate the non-
linear models. As noted by Taylor (2001), if the true DGP is nonlinear, the
temporally aggregated data could exhibit misleading properties regarding the
adjustment speeds. We examine the effects of different levels of temporal ag-
gregation on estimates of ESTAR models of real exchange rates.
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1 Introduction
Recently, a number of authors have reported empirical results that show that
after allowing for nonlinearities there is apparent mean reversion in real exchange
rates. The nonlinear models reported have been estimated on data sampled at
different levels of aggregation, namely monthly, quarterly and annual (see, e.g.,
Michael et al., 1997; Baum et al., 2001; Taylor et al., 2001; Kilian and Taylor,
2003; and Paya et al., 2003). As noted by Taylor (2001), much of the data
employed in empirical work is temporally aggregated.
There are some interesting issues raised by this work. A natural concern is

that the estimated nonlinear models may exhibit misleading properties when
the underlying data generating process operates at a higher frequency than the
observed data. One worry is that temporal aggregation may imply the disap-
pearance of nonlinearity. Another concern is that after temporal aggregation
the measured adjustment speeds based on nonlinear model estimates may be
biased.
The current paper addresses these concerns within the context of a specific

form of nonlinear model, namely the Exponential Smooth Autoregressive (ES-
TAR) model, that has been widely used to model real exchange rates. We follow
a set up similar to Taylor (2001) but that differs in one important respect. We
generate artificial data at the, possibly unobservable, high frequency from an
ESTAR model and temporally aggregate these data to frequencies of interest in
applied work. We then fit ESTAR models to the temporally aggregated data at
hypothetical monthly, quarterly and annual frequencies. This differs from Tay-
lor who estimates linear models on the temporally aggregated data and shows
that the linear estimates of adjustment speeds can be substantially downward
biased.
Based on Monte Carlo simulation we show that ESTAR type nonlinearites

are usually preserved under the temporal aggregation schemes we consider.2

However the dynamic structure of the best fitting models changes. In fact the
best fitting models in our simulations, for monthly, quarterly or annual fre-
quency, tend to take the form researchers have found to fit well on actual data
of the same frequency. This fact provides evidence in favor of temporal ag-
gregation and complements the direct evidence referred to in Taylor (2001) in
his discussion of the IMF’s data compilation. Furthermore comparison of the
measured speed of response to shocks with models estimated on the tempo-
rally aggregated data and the true DGP shows that the measured speed of
adjustment declines the more aggregated the data.
The rest of the paper is organized as follows. In section 2 we set out the

DGP for highest frequency data, our Monte Carlo methodology, the linearity
tests and the effect of temporal aggregation on nonlinear estimates of an ES-
TAR model. Section 3 compares the Monte Carlo results with actual estimates.

2Very little work has been done on the effects of aggregation on non-linear time series
models. Granger (1991), and Granger and Lee (1999) are notable exceptions. However, their
analysis does not consider nonlinear processes involving symmetric adjustment in models that
can exhibit near unit root behaviour.
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In section 4 we examine, employing nonlinear impulse response functions, the
speeds of adjustment to shocks obtained in the DGP and the estimated tem-
porally aggregated ESTAR models. Finally, section 5 summarizes our main
conclusions.

2 The true structural model and the effect of
time aggregation on estimated nonlinear pa-
rameters

We assume that at the highest frequency the DGP is given by an ESTAR model
of Ozaki (1985). A smooth rather than discrete adjustment mechanism is chosen
for two reasons. First a smooth adjustment process is suggested by the theoret-
ical analysis of Dumas (1992). Second, as postulated by Terasvirta (1994) and
demonstrated theoretically by Berka (2002), in aggregate data, regime changes
may be smooth rather than discrete given that heterogeneous agents do not act
simultaneously even if they make dichotomous decisions. We assume that the
ESTAR model which describes the DGP for modelling PPP deviations at the
highest data frequency has the simplest possible lag structure within the class
of ESTAR models and is given by

yt = e−γy
2
t−1yt−1 + ut (1)

where γ is a positive constant and ut is a white noise disturbance term with
standard error (se).
In fact the DGP given by equation (1) is that typically reported in empirical

studies of monthly data, the highest frequency observable in practice.
Figure 1 is a deterministic plot of the relationship between ∆y = yt − yt−1

and yt−1 obtained from (1). We observe in Figure 1 that for small deviations
from equilibrium, adjustment may be modelled as a unit root process - “the
optimality of doing nothing” - but for large deviations from equilibrium there
is mean reversion. If the process spends a significant proportion of time in or
near the unit root region, it will exhibit strong persistence and near unit root
behavior.
We simulate data from the ESTAR model (1) where the disturbance term,

ut, is assumed to be normally distributed.3

Following Taylor (2001) we create arithmetic temporal aggregates from the
simulated data as4

3We also consider nonnormal disturbances such as t-Student with 18 degrees of freedom
that in previous research appears to match the nonnormality of residuals (see Paya and Peel
2003). Results were qualitatively unchanged.

4 If the data is in logarithmic form, then y∗t is the geometric mean instead of the arithmetic
mean of the real exchange rates. We compared the correlation between the arithmetic and
geometric means conditional on some price processes. The correlations were close to unity
and the results qualitatively similar. Given this for simplicity we follow Taylor (2001) and
employ the arithmetic mean for the temporally aggregated data.
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y∗t =
(yt + yt−1 + yt−2 + ......+ yt−(i−1))

i
(2)

where i = 2, 3, 12.

Two different assumptions about the true DGP are made. First, we assume
that the true DGP is a nonlinear ‘monthly’ ESTAR process and simulate from
this 120,000 observations. We replicate this experiment 1,000 times.
The range of standard deviations of the disturbance term is calibrated on the

monthly estimates of equation (1), the highest aggregate data frequency avail-
able to researchers (see e.g., Taylor et al., 2001; and Venetis et al., 2002). These
studies report standard errors of around 0.035. For purposes of comparison we
also simulate series with a much lower standard deviation than found in the
monthly data and employ values of 0.01 and 0.035. The adjustment parameter
is given the values of γ = 0.5, 1. The estimates obtained in actual monthly data
tend to fall in this range.
Aggregating these observations three times, i = 3 (quarterly), or twelve

times, i = 12 (annual), yields 1,000 samples of 40,000 and 10,000 observations,
respectively. These samples will be used to analyze the ‘large sample’ behaviour
of aggregated nonlinear ‘monthly’ ESTAR models. To analyze the small sample
properties, we employ the same method but limit the sample sizes to 120 for
‘quarterly’ (i = 3) aggregation and 200 for ‘annual’ (i = 12) as these span the
most common used samples in the literature.5

The second assumption made is that the true DGP given by (1) is for data
generated at either a fortnightly or ten days frequency that is aggregated to
monthly data (i = 2, or 3) respectively. Again 120,000 observations are simu-
lated from (1) 1,000 times. In this case the standard errors of the residuals in
the true DGP are chosen as σ = 0.024, 0.028 so that the standard errors of the
residuals in the temporally aggregated data, i = 2, i = 3 match those found in
actual monthly estimates. Values of γ = 0.3, 0.4 were employed which produced
values of the speed of adjustment parameter in the aggregate data similar to
those observed in empirical work. In this exercise, the large sample analysis was
done with 10,000 observations of the aggregated data6 and the small sample
analysis with 360 observations matching the sample size of monthly data on
real exchange rates available from the post Bretton Woods period and around
the length of sample that has typically been employed in previous empirical
analysis.

5 Samples of real exchange rates of 120 at quarterly data are available for the post Bretton-
Woods period. At annual frequency the longest data set available is from 1792 in the case of
Dollar/Pound and Dollar/French Franc (see Lothian and Taylor 1996).

6The results employing 60,000 or 40,000 appeared essentially the same than on a sample
using 10,000. We report results on samples of 10,000 as it was computationally much less time
consuming.
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2.1 Testing for nonlinearity

Recent research has developed new testing procedures for the null hypothesis of
a unit root process against the alternative hypothesis of a nonlinear exponen-
tial smooth transition autoregressive (ESTAR) process, which is globally mean
reverting. Kapetanios et al. (2003), (KSS hereafter), derived a unit root test
against a nonlinear (and asymptotically stationary) alternative.7 This test has
better power than the standard Dickey-Fuller test in the region of the null. They
test the null hypothesis of a linear model, H0 : γ = 0.
KSS (table 3) report the power of their test for different parameter values in

the case where the residual term follows a standard normal distribution. They
show that the power of the test depends upon the values of the parameters in
the ESTAR form. The standard deviation of the error term in our simulated
processes is 0.035 and 0.01, and the values of γ = {1, 0.5}.
Kiliç (2003) developed an alternative testing method to detect the presence

of nonstationarity against nonlinear but globally stationary STAR process that
differs from KSS in the way it deals with the nuisance parameter that occurs
under the null. As the author claims, the advantage of Kiliç procedure over KSS
is twofold. First, it computes the test statistic even when the threshold param-
eter needs to be estimated in addition to the transition parameter. Second, it
claims to have higher power.
Table 1 reports the power of the KSS and Kiliç tests for large and small

sample sizes.8 The power of the tests are low for small sample sizes so that the
results of applying the KSS test to our processes should be interpreted with this
caveat in mind.
We apply both the KSS9 and Kilic10 tests to our aggregated nonlinear ES-

TAR processes. Table 2 presents the results and displays the proportion of times
that each individual test as well as both tests would reject the null hypothesis
of unit root against the alternative of an STAR. For large samples both tests
would always reject the null. With regard to small samples, the higher the
standard error (se) and the higher the speed of adjustment (γ), the higher is
the proportion of rejections. It is also worth pointing out that the greater the

7KSS examine the properties of their test under three different assumptions of stochastic
processes with nonzero mean and/or linear deterministic trend. In the cases where y∗t ex-
hibits significant constant or trend, y∗t should be viewed as the de-meaned and/or de-trended
variable.

8 In order to examine the power of the KSS test, we simulate model (18) in KSS. Please note
that KSS notation differs from ours. They use the parameter γ to denote the autoregressive
process of the dependent variable and the parameter θ for the speed of adjustment. To
exactly match our parameter values KSS simulations should be those with φ = 0, γ = −1, θ =
{0.012, 0.5x0.012, 0.0352, 0.5x0.0352}

9 In order to apply the KSS to the aggregated process we first regress y∗ on a constant and
trend. In cases where the constant and/or trend were significant we demeaned or detrended
the series and use the appropriate critical values.
10Kiliç suggests that making the interval too wide could make the transition function to be

flat for large values of γ. We have then decided to use an interval for γ according to values
usually found in our simulation results for each degree of aggregation. The values of C have
been selected as the corresponding to the ordered values of |z| and discard 10% of the highest
and smallest values.
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degree of temporal aggregation (e.g., monthly to annual as apposed to monthly
to quarterly) the greater the proportion of rejections. However, we must in-
terpret these results with some caution as the power of the tests imply that
non-rejection of the null might often occur when the process is ESTAR.
In the next section we will examine the properties of the nonlinear ESTAR

estimation. One approach would be to first test for ESTAR nonlinearity using
both the KSS and Kilic tests and if they do not reject the unit root hypothesis
then do not carry any further nonlinear estimation. However, following our
previous analysis on the power of these tests, a researcher could carry on with
the estimation process even though rejection of the unit root hypothesis might
not occur. We therefore analyze the effects that temporal aggregation has on
the ESTAR estimation process as a separate exercise.

2.2 Nonlinear ESTAR Estimation

On the aggregated data we estimate by nonlinear least squares the following
model

y∗t = a+B(L)y∗t−1e
−γ(y∗t−1−a)2 + vt (3)

where B(L) is a polynomial lag operator of order up to five which rendered
the disturbance term vt empirical white noise,11 and a is a constant. Empirical
marginal significance levels of the estimated parameter γ are obtained through
Monte Carlo simulation as it is not defined under the null. In particular, the
model is assumed to follow a unit root linear autoregressive process and then a
nonlinear ESTAR specification (equation 3) is estimated, computing the appro-
priate confidence interval of significance for γ.
First, we examine the results obtained in the case of the large samples de-

scribed above. We observe in the results reported in Tables 3a, 3b, 3c and 3d
that time aggregation induces higher order autoregressive terms in the fitted
models at lower frequencies than occur in the DGP. Moreover, the additional
autoregressive structure induced by time aggregation seems to have a limiting
number of terms. The second order autoregressive term is always significant.
Terms in an autoregressive process of order three are significant at least 95% of
the time except for i=2 when it falls to 59%. Higher order terms exhibit a steep
fall in significance. The significance of the AR(4) parameter varies between
37% and 7% with that of the AR(5) parameter between 5-7%. The order of the
autoregressive structure appears to be independent of the range of standard
errors of the disturbance term and the speed of adjustment parameters imposed
in the true DGP in our simulations.
The regression standard error and the point estimate of the speed of ad-

justment parameter, γ, increase with the degree of aggregation. The speed of
adjustment parameter is always significant in the large sample estimates. An-
other feature of the time aggregation is the finding of significant LM test for

11On the basis of the LM test of Eitrheim and Terasvirta (1996).
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ARCH. The greater the degree of aggregation and the higher the standard er-
ror of the disturbance term in the DGP the more accentuated the finding of a
significant LM test for ARCH. Noting that the LM test for ARCH is a test for
model misspecification and that the errors in the DGP do not exhibit ARCH,
this suggests that specification (3) may become less parsimonious as an appro-
priate way of modelling the temporally aggregated process (1) as the degree
of aggregation increases. We also note that the lower the frequency and the
higher the standard error of the disturbance term the lower the goodness of fit
parameter R2.
When the estimations are undertaken with smaller samples of observations

of 120, 200 and 360, corresponding to quarterly, annual and monthly data em-
ployed in empirical studies, the nonlinear estimates of (3) show the following
features. The fitted ESTAR exhibits significant AR(2) structure between 50
and 89 percent of the time for i=2,3,12 dependent upon the noise and the speed
of adjustment in the true DGP. Autoregressive terms of order greater than two
are significant less than ten percent of times. Significant LM tests for ARCH are
not found in 90% of the fitted models. The estimated speed of adjustment pa-
rameters are higher than in the large sample simulations12 with larger standard
errors and approximately forty percent are significant at the 5% significance
level. Consequently, in small sample estimates of nonlinear ESTAR models, on
temporally aggregated data, we could erroneously reject the hypothesis that the
true DGP follows a nonlinear process.13

Nonlinear ESTAR models have been reported at various levels of aggregation
and the reported empirical results conform with those obtained on the simulated
data. Kilian and Taylor (2003) report AR(2) structure in all ESTAR models
fitted to quarterly data for seven OECD economies. Michael et al. (1997) report
AR(2) structure employing annual data. Also significant LM tests for ARCH
are rarely reported.

3 Further comparison between simulated data
and empirical estimates from actual data

We now proceed to compare further the empirical results obtained from sim-
ulated data with those obtained from actual data. Table 4 presents monthly
estimates of ESTAR models for seven bilateral real exchange rates against the
Dollar in the post Bretton Woods era taken from Venetis et al. (2002). The
estimated model corresponds to that of Equation (3). The estimates of γ are
between 0.16 and 0.8 and the standard deviation of the regressions is around
0.033. We added an additional column, where the p-value of the second AR
term in the estimates is included. For the majority of the cases, PPP devi-

12See Paya and Peel (2004a) for a discussion on the upward bias of the ESTAR estimates
in small samples.
13Granger and Lee (1999) examine the effects of time aggregation on nonlinearity tests draw-

ing a similar conclusion. Nonlinearity could be rejected when the model has been temporally
aggregated.

7



ations appear parsimoniously described by the simple ESTAR structure given
by equation (1). However, it appears that in the case of the Dollar/Yen at the
five percent level and the Dollar/Pound and Dollar/Lira at the fifteen percent
level, the second AR term plays a significant role. Simulations presented above
show that time aggregation induces AR(2) structure in the estimated nonlinear
process.
Empirical results at different levels of aggregation (i = 3, i = 12) are reported

in Tables 5 and 6. The quarterly estimates are taken from Kilian and Taylor
(2003). We also present annual estimates of Equation (3) for the Dollar/Pound
and the Dollar/Franc for two hundred years derived by Lothian and Taylor
(1996) and analyzed by Michael et al. (1997). We note that this data set spans
many changes in exchange rate regimes so the results need to be interpreted
with that caveat in mind. The Dollar/Deutsche Mark is for the Gold Standard
-data source- reported in Paya and Peel (2004b). We observe that the estimates
of γ are higher than at monthly frequency and similar to those suggested by the
simulation exercise above. We also note that the autoregressive structures have
a significant AR(2) component.14 This is interesting given our Monte Carlo
showed that in over fifty percent of simulations at “quarterly aggregation” and
seventy five percent of simulations at “annual aggregation” gave rise to this
specification.

4 Generalized impulse response functions
One of the major objections to PPP following a random walk is the counter-
intuitive conclusion that shocks persist forever. In addition, even if a stationary
linear model could be specified with near unit root behaviour, the percentage
absorption of shocks over time will be the same regardless the shock magnitude.
In this section, we analyze the persistence properties of temporally aggregated
exponential smooth transition models. A number of properties of the impulse
response functions of linear models do not carry over to the nonlinear models.15

The Generalized Impulse Response Function (GIRF) introduced by Koop,
Pesaran and Potter (1996) is defined as the average difference between two
realizations of the stochastic process {yt+h} which start with identical histories
up to time t − 1 (initial conditions) but one realization is “hit” by a shock at
time t while for the other (the benchmark profile) no shock occurs. The GIRF
of Koop et al. (1996) is defined as,

14 In the case of the Dollar/Franc the AR(2) term is insignificant but the residuals exhibit
better properties. It is worth noting that these estimations span a long period of time with
different exchange rate regimes. Even though those nonlinear estimates have recently been
proved to be robust (see Lothian and Taylor, 2004; and Paya and Peel, 2004c) under het-
eroskedastic residuals they must be taken with caution as there might be some unexplored
effects of regime changes on the nonlinear parameters.
15 In particular, impulse responses produced by nonlinear models are; a) history dependent,

so they depend on initial conditions, b) dependent on the size and sign of the current shock,
and c) they depend on future shocks as well.
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GIRFh(h, δ, ωt−1) = E(yt+h|ut = δ, ωt−1)−E(yt+h|ut = 0, ωt−1) (4)

where h = 1, 2, .., denotes horizon, ut = δ is an arbitrary shock occurring at
time t and ωt−1 defines the history set of yt. Given that δ and ωt−1 are single
realizations of random variables, expression (4) is considered to be a random
variable.
Note that (4) is general enough to allow multiple interpretations.16 Here we

choose to condition upon “all past histories”. Simulation of various shock sizes
(δ values) will then illustrate the possible differences in persistence arising in
the ESTAR model from different shock sizes.
Since analytic expressions for the conditional expectations involved in (4)

are not available for h > 1, we use stochastic simulation (Gallant et al., 1993;
and Koop et al., 1996; for a detailed description} to approximate function (4).
Given a particular value of the log real exchange rate at time t, a shock of k

percent to the level of the real exchange rate involves augmenting yt additively
by ln(1+k/100). Hence, ut = δ at time t and we choose δ = ln(1+ k/100) with
k = 5, 20, 30. The particular choice of δ’s allows us to compare and contrast
the persistence of large and small shocks. For each history, we construct 5000
replications of the sample paths ŷ∗0 , ..., ŷ

∗
h based on ut = δ and ut = 0 by

randomly drawn residuals as noise for h ≥ 1. The difference of these paths is
averaged across the 5000 replications and it is stored. At the end, we average
across histories.
The persistence of the shocks could be evaluated as suggested by Koop et al.

(1996), using the dispersion of the distribution of (4) as horizon h increases.17

However, the main issue is to compute how many periods (h) are necessary for
the impulse response function to be “significantly” reduced.
In the case of nonlinear models, monotonicity need not hold.18 Hence, we

calculate the x − life of shocks for (1 − x) = 0.25, 0.50 and 0.80 where 1 − x
corresponds to the fraction of the initial effect ut that has been absorbed.19

We examine the implied speeds of adjustment to shocks for the Monte Carlo
experiments in Section 2.20 Table 7 reports the results of applying this procedure
in the case of the large and small samples outlined in section 2. Larger shocks
16For example we can condition upon the specific realization of Ωt−1 that reads “all past

values” ωt−1 = {y1, y2, ..., yt−1} and treat ut as randomly chosen. Or we can condition on
“all positive past histories” and ωt−1 = {yi : 1 ≤ i ≤ t−1 and yi > 0}. Accordingly there are
histories defined by a fixed band set −b < yi < b etc. Of course the error shock hitting the
model at time t could also belong to some positive, negative or fixed band set just to mention
a few possible cases.
17 See the working paper version of the article (Paya and Peel 2004d) for a detailed discussion

of this issue.
18We thank an anonymous referee for pointing out this fact. For a full discussion on different

measures of half-life shocks and estimating prodedures see Murray and Papell (2002) and
Killian and Zha (2002).
19 See Van Dijk, Franses and Boswijk (2000, p.7)
20We refer the reader to the working paper version of the article (Paya and Peel 2004d)

for a detailed description of the procedure followed to obtain the GIRF of the temporally
aggregated data in the Monte Carlo experiment.
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always imply faster adjustments and the reduction in the time needed to absorb
fraction (1 − x) of different size shocks depends on the proportion (1 − x). In
other words, if the shock increases from 5% to 20% the reduction in the time
needed to absorb 25% of both shock is not the same as the reduction in time
needed to absorb 50% of the shocks. Moreover, in either large and small samples
the time needed to absorb (1− x) of the shock increases with the aggregation
process.
It is also worth pointing out that the upward bias obtain in the small sample

estimates discussed in section 2 imply faster adjustment to shocks in the small
sample case than in the large sample case.
In order to compare our simulation results with actual estimates, Tables 4,

5 and 6 display the half-life shocks (1 − x = 50%) for the nonlinear models
estimated on actual data reported in those tables. Employing the simulations
results as a benchmark, we can then use these empirical estimates of half-lives
of shocks to try to approximate the nature of the true DGP of PPP deviations.
We will concentrate on the speed of adjustment to shocks of the Dollar/Pound,
Dollar/French Franc, and Dollar/Deutsche Mark. The difference between the
speed of adjustment to shocks in the monthly and annual data is around twenty
four months for the three different currencies. The difference between the ad-
justment at quarterly and annual data is either zero or twelve months. This
pattern is the one followed by the Monte Carlo results when we aggregate a
true DGP from monthly to quarterly and annual data.

5 Conclusions

Nonlinear models of deviations from PPP have recently provided an important,
theoretically well motivated, contribution to the PPP puzzle. Most of these
studies use temporally aggregated data to empirically estimate the nonlinear
models. In this paper we have assumed the true DGP at the highest data
frequency is an ESTAR model. Given this model we have generated artificial
data and examined the effects of different levels of temporal aggregation on
estimates of ESTAR models of real exchange rates. Our principal findings are
that ESTAR nonlinearities are generally preserved in the temporally aggregated
data, though the lag structure changes, and that the implied speed of adjustment
to shocks declines the more aggregated the data.
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Table 1. Power of unit root test against STAR
KSS Kiliç

γ = 1 se = 0.035 sample 10,000 1 1
sample 350 0.355 0.652

se = 0.01 sample 10,000 1 1
sample 350 0.091 0.331

γ = 0.5 se = 0.035 sample 10,000 1 1
sample 350 0.204 0.560

se = 0.01 sample 10,000 1 1
sample 350 0.077 0.305

Table 2. Nonlinear test in temporal aggregated ESTAR
KSS Kiliç Both

Aggregation i=12 (annual aggregation)
γ = 1 se = 0.035 sample 10,000 1 1 1

sample 200 0.991 1 0.991
se = 0.01 sample 10,000 1 1 1

sample 200 0.680 0.601 0.441
γ = 0.5 se = 0.035 sample 10,000 1 1 1

sample 200 0.972 0.964 0.961
se = 0.01 sample 10,000 1 1 1

sample 200 0.401 0.395 0.198
Aggregation i=3 (quarterly aggregation)

γ = 1 se = 0.035 sample 40,000 1 1 1
sample 120 0.308 0.254 0.169

se = 0.01 sample 40,000 1 1 1
sample 120 0.108 0.135 0.054

γ = 0.5 se = 0.035 sample 40,000 1 1 1
sample 120 0.195 0.189 0.091

se = 0.01 sample 40,000 1 1 1
sample 120 0.090 0.122 0.046

Aggregation i=3 (monthly aggregation)
γ = 0.3 se = 0.024 sample 10,000 1 1 1

sample 360 0.423 0.359 0.271
Aggregation i=2 (montly aggregation)

γ = 0.4 se = 0.028 sample 10,000 1 1 1
sample 360 0.340 0.450 0.230
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Table 3a. Results for simulated aggregated data of ESTAR model

True DGP: yt = e−γy
2
t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y∗t−1e
−γ(y∗t−1−a)2

Aggregation i=12 (annual aggregation)
γ = 1 γ = 1
se = 0.035 se = 0.01
sample10, 000 sample 200 sample10, 000 sample 200

Mean bγ 4.50 5.00 7.62 10.50
sd bγ 0.45 3.85 0.70 6.80
t(bγ) 1.000 0.240 1.000 0.370
R2 0.60 0.60 0.86 0.85
se 0.077 0.077 0.025 0.025
LM Arch 1.000 0.183 0.300 0.070
AR(2) 1.000 0.750 1.000 0.860
AR(3) 0.995 0.095 0.990 0.120
AR(4) 0.220 0.075 0.270 0.065
AR(5) 0.070 0.070 0.060 0.060

γ = 0.50 γ = 0.50
se = 0.035 se = 0.01
sample10, 000 sample 200 sample10, 000 sample 200

Mean bγ 2.78 3.30 4.07 5.95
sd bγ 0.24 2.00 0.38 4.58
t(bγ) 1.000 0.360 1.000 0.340
R2 0.69 0.69 0.90 0.89
se 0.082 0.082 0.026 0.026
LM Arch 0.995 0.010 0.157 0.058
AR(2) 1.000 0.770 1.000 0.840
AR(3) 0.996 0.120 1.000 0.123
AR(4) 0.220 0.080 0.290 0.067
AR(5) 0.070 0.070 0.077 0.043
Notes: sd denotes standard deviation of coefficient γ. t(bγ) denotes ratio of significant γ
parameter where empirical significance level is obtained through Monte Carlo. se denotes
standard error of equation. LM Arch is the ratio of rejection of the Lagrange Multiplier test
for ARCH in the residuals. AR(p) denotes ratio of significant autoregressive term
of order p.
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Table 3b. Results for simulated aggregated data of ESTAR model

True DGP: yt = e−γy
2
t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y∗t−1e
−γ(y∗t−1−a)2

Aggregation i=3 (quarterly aggregation)
γ = 1 γ = 1
se = 0.035 se = 0.01
sample 40, 000 sample 120 sample 40, 000 sample 120

Mean bγ 2.14 3.50 2.37 13.80
sd bγ 0.09 3.00 0.17 19.50
t(bγ) 1.000 0.390 1.000 0.270
R2 0.86 0.85 0.96 0.92
se 0.047 0.047 0.013 0.013
LM Arch 0.584 0.092 0.128 0.085
AR(2) 1.000 0.460 1.000 0.510
AR(3) 1.000 0.090 1.000 0.110
AR(4) 0.370 0.066 0.350 0.083
AR(5) 0.055 0.055 0.077 0.066

γ = 0.50 γ = 0.50
se = 0.035 se = 0.01
sample 40, 000 sample 120 sample 40, 000 sample 120

Mean bγ 1.10 2.20 1.20 11.70
sd bγ 0.05 2.54 0.09 19.25
t(bγ) 1.000 0.375 1.000 0.240
R2 0.90 0.88 0.97 0.92
se 0.048 0.047 0.014 0.014
LM Arch 0.310 0.070 0.127 0.087
AR(2) 1.000 0.510 1.000 0.490
AR(3) 1.000 0.100 1.000 0.090
AR(4) 0.350 0.050 0.380 0.062
AR(5) 0.070 0.070 0.068 0.078
Notes: see notes in table 1
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Table 3c. Results for simulated aggregated data of ESTAR model

True DGP: yt = e−γy
2
t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y∗t−1e
−γ(y∗t−1−a)2

Aggregation i=3 (monthly aggregation)
γ = 0.3
se = 0.024
sample 10, 000 sample 360

Mean bγ 0.71 1.09
sd bγ 0.08 0.75
t(bγ) 1.000 0.390
R2 0.95 0.93
se 0.033 0.033
LM Arch 0.114 0.100
AR(2) 1.000 0.890
AR(3) 0.950 0.110
AR(4) 0.130 0.080
AR(5) 0.052 0.055
Notes: see notes in table 1

Table 3d. Results for simulated aggregated data of ESTAR model

True DGP: yt = e−γy
2
t−1yt−1 + ut

Estimated model: y∗t = a+B(L)y∗t−1e
−γ(y∗t−1−a)2

Aggregation i=2 (monthly aggregation)
γ = 0.4
se = 0.028
sample 10, 000 sample 360

Mean bγ 0.67 1.01
sd bγ 0.08 0.76
t(bγ) 1.000 0.390
R2 0.95 0.93
se 0.033 0.033
LM Arch 0.126 0.084
AR(2) 1.000 0.700
AR(3) 0.590 0.080
AR(4) 0.070 0.050
AR(5) 0.050 0.045
Notes: see notes in table 1
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Table 4. Results from ESTAR models of bilateral dollar real exchange rates.
Montly observations 1973-2001.

δ̂0 β̂1 β̂2 γ̂ s p AR(2) Half-life to 10% shock
FRF -0.025 1.037 β2 = 0 0.779 0.031 0.55 12

(0.031) (0.022) (0.313)
BEF 0.005 1.018 β2 = 0 0.331 0.033 0.46 25

(0.048) (0.020) (0.185)
DEM -0.027 1.033 β2 = 0 0.625 0.033 0.27 13

(0.036) (0.021) (0.248)
ITL -0.045 1.017 β2 = 1− β1 0.336 0.030 0.15 36

(0.043) (0.022) (0.194)
JPY 0.479 1.105 β2 = 1− β1 0.155 0.033 0.05 40

(0.059) (0.053) (0.082)
NLG 0.041 1.022 β2 = 0 0.481 0.033 0.48 18

(0.046) (0.022) (0.236)
GBP 0.109 1.094 β2 = 0 0.595 0.031 0.16 24

(0.059) (0.069) (0.361)
Notes: Numbers in parentheses are Newey-West standard error estimates. s denotes the residuals standard error.
pAR(2) denotes p-value of second autoregressive term in the ESTAR estimation.

Source: Table from Venetis et al. (2002)

Table 5. Results from ESTAR models of bilateral dollar real exchange rates.
Quarterly observations 1973-1998

δ̂0 β̂1 β̂2 γ̂ s Half-life to 10% shock
FRF 0.095 1.32 β2 = 1− β1 0.964 0.047 36

(0.033) (0.096) (0.152)
DEM 0.096 1.233 β2 = 1− β1 0.794 0.053 36

(0.036) (0.099) (0.125)
CAN 0.00 1.181 β2 = 1− β1 0.706 0.019 40

(0.078) (0.043)
ITL 0.00 1.154 β2 = 1− β1 0.909 0.054 36

(0.113) (0.247)
JPY 0.00 1.350 β2 = 1− β1 0.725 0.057 40

(0.103) (0.094)
SW 0.00 1.292 β2 = 1− β1 0.724 0.059 40

(0.099) (0.139)
GBP 0.00 1.144 β2 = 1− β1 1.069 0.052 36

(0.103) (0.324)
Notes: Numbers in parentheses are Newey-West standard error estimates. s denotes the residuals
standard error. Source: Table from Kilian and Taylor (2003)
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Table 6. Results from ESTAR models of bilateral dollar real exchange rates.
Annual observations

δ̂0 β̂1 β̂2 γ̂ s Half-life to 10% shock
Dollar/FrF -0.083 1.12 β2 = 1− β1 4.03 0.076 36
1804-1992 (0.025) (0.15) (1.54)
Dollar/Pound -0.210 1.18 β2 = 1− β1 2.43 0.069 48
1792-1992 (0.019) (0.069) (0.54)
Dollar/DM -0.033 1.09 β2 = 1− β1 2.52 0.095 48
1795-1913 (0.032) (0.08) (0.60)
Notes: Numbers in parentheses are Newey-West standard error estimates. s denotes the residuals
standard error

Table 7: Estimated half-lives of shocks in months from Temporally aggregated Data:
True DGP yt = e−γy

2
t−1 + ut where ut = N(0, se)

Shock: 5% 20% 30%
Line Months Months Months
Temporal Aggregation Large Sample 25% 50% 80% 25% 50% 80% 25% 50% 80%
1 True DGP γ = 1, se = 0.035 7 18 45 6 16 42 4 13 38
2 i=3: γ = 2.14, se = 0.047 12 27 66 7 21 60 4 14 51
3 i=12: γ = 4.5, se = 0.077 20 42 97 12 27 84 6 14 72
4 True DGP γ = 0.4, se = 0.028 8 19 47 6 16 42 3 12 39
5 i=2 γ = 0.67, se = 0.035 8 22 56 6 18 51 4 14 46
6 True DGP γ = 0.3, se = 0.024 7 16 37 4 13 31 3 10 29
7 i=3 γ = 0.71, se = 0.035 9 23 57 6 18 52 4 15 47
Temporal Aggregation Small Sample
8 True DGP γ = 1.65, se = 0.035 6 14 34 4 11 31 2 8 27
9 i=3: γ = 3.5, se = 0.047 11 24 54 6 16 48 3 12 42
10 i=12: γ = 5, se = 0.077 21 40 96 12 26 82 3 14 72
11 True DGP γ = 0.7, se = 0.028 4 11 30 3 8 27 2 7 23
12 i=2: γ = 1, se = 0.035 7 19 46 4 15 39 3 12 35
13 True DGP γ = 0.5, se = 0.024 4 9 22 3 5 20 2 4 16
14 i=3: γ = 1, se = 0.035 6 16 44 5 14 41 3 10 35
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