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ABSTRACT

The specification of Smooth Transition Regression models con-
sists of a sequence of tests, which are typically based on the assump-
tion of i.i.d. errors. In this paper we examine the impact of condi-
tional heteroskedasticity and investigate the performance of several
heteroskedasticity robust versions. Simulation evidence indicates that
conventional tests can frequently result in finding spurious nonlinear-
ity. Conversely, when the true process is nonlinear in mean the tests
appear to have low size adjusted power and can lead to the selection of
misspecified models. The above deficiencies also hold for tests based
on Heteroskedasticity Consistent Covariance Matrix Estimators but
not for the Fixed Design Wild Bootstrap. We highlight the impor-
tance of robust inference through empirical applications.
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1 INTRODUCTION

Over the last decades there has been a steadily increasing interest in the
development and application of nonlinear time series models. A widely used
family of nonlinear models is the Smooth Transition Autoregression (STAR)
of Granger and Teräsvirta (1993) and Teräsvirta (1994). By allowing regime
dependent behavior STAR models appear to parsimoniously capture the non-
linear dependence (in the mean) of many economic and financial time series
(see, e.g., van Dijk et al. 2002).

Due to the fact that there are various STAR formulations researchers typ-
ically adopt a modeling cycle, which consists of specification, estimation and
evaluation stages (Eitrheim and Teräsvirta 1996). Testing linearity com-
prises the first step of the specification procedure. Several linearity tests
against smooth transition nonlinearity have been proposed in the literature
(e.g., Luukkonen et al. 1988; Teräsvirta 1994; Escribano and Jordá 1999;
González and Teräsvirta 2006). The most widely used are the LM type test
of Teräsvirta (1994) and the test derived by Escribano and Jordá (1999).
Despite the fact that there is a vast empirical literature suggesting that the
residuals of many regression models in economics and finance exhibit time
varying conditional variance (Engle 1982, 2001), the robustness of these tests
to conditional heteroskedasticity has not been thoroughly addressed.

As noted by a number of researchers neglected heteroskedasticity may
result in substantial oversizing of linearity tests. It also holds that the perfor-
mance of tests for conditional heteroskedasticity depends on the correct spec-
ification of the conditional mean (see, e.g., Blake and Kapetanios 2007, and
references therein). Notably, Granger and Teräsvirta (1993) argue that the
Autoregressive Conditional Heteroskedastic (ARCH) model of Engle (1982)
although linear in mean can complicate tests for linearity. Wong and Li
(1997) show through Monte Carlo simulations that tests for Threshold Au-
toregression (TAR) assuming a constant conditional variance can be heavily
oversized in the presence of ARCH innovations. A similar empirical finding is
provided by Hurn and Becker (2007) for the neural network test of Teräsvirta
et al. (1993). Further, Bera and Higgins (1993, 1997) argue that bilinear pro-
cesses can be confused with ARCH processes due to the similarity of their
unconditional moment structure.

Granger and Teräsvirta (1993), based on the work of Davidson and MacK-
innon (1985), propose a robust test for linearity against STAR nonlinearity
in the presence of unknown form of heteroskedasticity. However, Lundbergh
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and Teräsvirta (1998) illustrate that although the above robustification sig-
nificantly reduces oversizing it may result in a severe loss of power. To this
end, they suggest using the original test and examining the presence of ne-
glected heteroskedasticity in the following steps of the modeling procedure.
However, such a modeling cycle may often lead to the misspecification of the
conditional mean.

In this article, we investigate the effect of conditional heteroskedastic-
ity on the linearity test of Escribano and Jordá (1999) as well as four het-
eroskedasticity robust versions. The first three utilize the Heteroskedasticity
Consistent Covariance Matrix Estimators (HCCMEs) considered in White
(1980) and MacKinnon and White (1985), while the last one employs the
Fixed Design Wild Bootstrap of Kreiss (1997) and Gonçalves and Kilian
(2004, 2007). HCCMEs are typically employed by researchers due to their
simple implementation and their little computational cost (Long and Ervin
2000) compared to bootstrap methods. Although we focus on the General-
ized Autoregressive Conditional Heteroskedastic (GARCH) model of Boller-
slev (1986), we also report results for the Asymmetric GARCH model of
Engle (1990), the Exponential GARCH model of Nelson (1991), the GJR
GARCH model of Glosten et al. (1993) and the stochastic volatility model
advocated by Taylor (1986) and Shephard (1996).

Our findings illustrate that conventional tests may seriously overreject
the null of linearity when the null is true and the conditional variance of the
error term is time varying. Further, the degree of oversizing is much higher
than the one reported by Lundbergh and Teräsvirta (1998) for the Teräsvirta
(1994) test and tends to increase with the sample size. On the other hand, if
the true process is nonlinear in the mean, conditional heteroskedasticity can
frequently result in choosing misspecified nonlinear models. Consequently,
this can pose problems in the estimation stage of STAR models.

In general, robust tests based on HCCMEs perform poorly. These tests
do not always lead to an improvement in empirical size and, usually, result
in very low size adjusted power. The final inference technique, the Fixed
Design Wild Bootstrap, is superior with respect to all the criteria employed
in this study. First, the empirical size of the tests is very close to the nominal
significance level. Second, the empirical power is much higher than the rest of
the methods. Finally, it results in the selection of correctly specified models
in the majority of cases.

The rest of the paper is organized as follows. Section 2 outlines the
basic STAR representation, which facilitates the analysis of testing linear-
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ity against STAR nonlinearity in Section 3. Dealing with conditional het-
eroskedasticity of unknown form using HCCMEs and the Fixed Design Wild
Bootstrap is discussed in Section 3.1. The next section investigates the finite
sample performance of the tests through Monte Carlo simulations. Section 5
presents an empirical application on empirical data. Finally, the last section
concludes.

2 THE SMOOTH TRANSITION REGRESSION

MODEL

The basic STAR model representation for a univariate time series yt is
given by

yt = π1,0 + π1,1yt−1 + · · · + π1,pyt−p + (π2,0 +

+π2,1yt−1 + · · · + π2,pyt−p)F (st; γ, c) + ǫt, t = 1, . . . , T, (1)

or equivalently

yt = π′

1
xt + π′

2
xtF (st; γ, c) + ǫt, t = 1, . . . , T, (2)

where xt = (1, x̃′

t)
′ with x̃t = (yt−1, . . . , yt−p)

′ and πj = (πj,0, . . . , πj,p)
′, for

j = 1, 2. The STAR model can be easily extended to a Smooth Transi-
tion Regression (STR) model by augmenting Equation (2) with exogenous
regressors. Hence, our analysis can be generalized to the STR model in a
straightforward manner. Depending on the derivation of the linearity test
under consideration, it is assumed that the error term, ǫt, is either an inde-
pendent, identically normally distributed random variable, ǫt ∼ N (0, σǫ), or
a martingale difference sequence. That is E[ǫt|It−1] = 0, where It−1 is the
information set up to time t−1 consisting of all lagged values of y. Note that
in the latter case the variance of the error term is not restricted to be con-
stant. Models that capture the dependence both in the conditional mean and
the conditional variance can be found in Lundbergh and Teräsvirta (1998)
and Chan and McAleer (2002).

The transition function F (·) is at least fourth-order, continuously differ-
entiable with respect to γ and is bounded between 0 and 1. The selection of
the transition function specifies the two common forms of the STAR model.
For the Exponential STAR (ESTAR) the transition function is given by

F (st; γ, c) = 1 − exp
(
−γ (st − c)2

)
, γ > 0, (3)
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while for the Logistic STAR (LSTAR),

F (st; γ, c) = [1 + exp (−γ (st − c))]−1 , γ > 0, (4)

where c is a constant and st is the transition variable. The transition variable
is usually set equal to the lagged endogenous variable yt−d, where the delay
parameter d is a positive integer. For st = yt−d and c = π2,0 = 0 the ESTAR
model collapses to the Exponential Autoregressive (EAR) model of Haggan
and Ozaki (1981). Other choices are also possible for the transition variable,
such as exogenous variables, nonlinear functions of yt−d or time trends (see,
e.g., van Dijk et al. 2002; Paya et al. 2003). The ESTAR transition function
is symmetric around (yt−d − c) and admits the limits

F (·) → 1 as |st−d − c| → +∞, (5)

F (·) → 0 as |st−d − c| → 0. (6)

While the Logistic transition function is asymmetric around (yt−d − c) and
admits the limits

F (·) → 1 as (st−d − c) → +∞, (7)

F (·) → 0 as (st−d − c) → −∞. (8)

Figure 1 illustrates the two transition functions. The smoothness parameter
γ ∈ (0,∞] determines the speed of transition of F (·) towards the inner or
outer regime and, therefore, the “degree” of nonlinearity. As γ → 0 both
transition functions approach a constant and the models become linear. For
the ESTAR model the same holds when γ → ∞. Therefore, STAR models
nest linear AR models. Moreover, the LSTAR model nests the Threshold
Autoregressive (TAR) model with two regimes since for γ → ∞ the logistic
transition function approaches the indicator function.

FIGURE 1

The properties of STR and STAR models are very appealing in mod-
eling nonlinear economic and financial time series. For example, the fact
that macroeconomic time series as well as their relationships may be char-
acterized by asymmetries associated with the stages of the business cycle
(see, e.g., Skalin and Teräsvirta 1999; Sensier et al. 2002; Deschamps 2008)
makes LSTR models particularly applicable. On the other hand, factors
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such as market frictions, the sunk costs of international arbitrage as well
as heterogeneous agents, may induce nonlinear and symmetric adjustment
of many macroeconomic and financial series (e.g., real exchange rates, long
gilt futures, dividend-price ratios) motivating the use of ESTR models (e.g.,
Michael et al. 1997; Gallagher and Taylor 2001; McMillan and Speight 2002).

3 TESTING LINEARITY AGAINST SMOOTH

TRANSITION NONLINEARITY

There is usually uncertainty about the exact Data Generating Process (DGP)
of a variable. Data driven methods allow the selection between competing
models and, therefore, provide evidence on the validity of the implications
of theoretical models. Several testing procedures have been proposed in
the literature to examine whether a series exhibits STAR nonlinearity and,
in turn, if the nonlinearity displayed is of ESTAR or LSTAR form (e.g.,
Luukkonen et al. 1988; Teräsvirta 1994; Escribano and Jordá 1999; González
and Teräsvirta 2006).

Testing for the nonlinear part of Equation (2) gives rise to an nuisance
parameter problem (Davies 1977, 1987). The null hypothesis of linearity
corresponds to both H0: π′

2
= 0 and H0: γ = 0. In the former case the

parameters γ and c are not identified under the null. While in the latter
parameters π′

2
and c are not identified. Consequently, classical Lagrange

Multiplier (LM) and Wald statistics may not follow standard distributions.
Luukkonen et al. (1988) suggest replacing the transition function by a first
order Taylor-series approximation around γ = 0.1 This re-parameterization
resolves the identification problem since it does not involve nuisance param-
eters. The auxiliary regression is given by

yt = δ′

0
xt + δ′

1
xtst + δ′

2
xts

2

t + ut, (9)

where ut = ǫt + R(γ, st), R(·) is the remainder term of the Taylor series.
However, if st = yt−d and d ≤ p then

yt = δ′

0
xt + δ′

1
x̃tst + δ′

2
x̃ts

2

t + ut, (10)

1Note that test based on Taylor-series approximations do not have direct power against
a single alternative.
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so as to avoid perfect multicollinearity among the explanatory variables. In
order to ease notation we assume p < d. The null hypothesis of linearity
becomes H0: δ′

1
= δ′

2
= 0. Under the null, the LM test statistic has an an

asymptotic χ2 distribution with the degrees of freedom equal to the number of
restrictions. A drawback of the above auxiliary regression arises for LSTAR
processes (δ′

2
= 0). In particular, if yt is an LSTAR process and only intercept

changes are significant across regimes then the nonlinearity test will lack
power (see, e.g., Escribano and Jordá 2001). To this end, the authors suggest
using a third order Taylor series approximation of the logistic function. This
yields the auxiliary regression

yt = δ′

0
xt + δ′

1
xtst + δ′

2
xts

2

t + δ′

3
xts

3

t + ut. (11)

Teräsvirta (1994) proposes a modeling procedure based on Equation (11)

1. Specification of a linear model. The selection of the lag order can be
implemented by using either a criterion such as the Akaike Information
Criterion (AIC) or significance tests.

2. Testing the null hypothesis of linearity, H00: δ′

1
= δ′

2
= δ′

3
= 0. Often,

the transition variable is set equal to the lagged endogenous variable
yt−d. However, there may be uncertainty about the appropriate delay
parameter, d, in the STR model. In this case, we can determine the
transition variable by testing H00 for various values of d and selecting
the one for which the P value is smallest.

3. Selecting the transition function. The choice between ESTAR and
LSTAR models can be based on the following sequence of null hy-
potheses:

H03 : δ′

3
= 0,

H02 : δ′

2
= 0 | δ′

3
= 0,

H01 : δ′

1
= 0 | δ′

2
= δ′

3
= 0.

If the P value for the F test of H02 is smaller than that for H01 and
H03 then we select the ESTAR family, otherwise we choose the LSTAR
family.

While Teräsvirta (1994) uses a third order Taylor expansion of the logistic
function and a first order expansion for the exponential function, Escribano

7



and Jordá (1999) augment the regression equation with a second order ex-
pansion of the exponential function. Note that even (odd) powers of the
Taylor approximation of the logistic (exponential) function are all zero. The
point of using a second order Taylor expansion lies in the fact that the lo-
gistic function has one inflection point while the exponential possesses two.
The auxiliary regression is given by

yt = δ′

0
xt + δ′

1
xtst + δ′

2
xts

2

t + δ′

3
xts

3

t + δ′

4
xts

4

t + ut. (12)

Escribano and Jordá (1999) claim that this procedure improves the power
of both the linearity test and the selection procedure test. The null hypothesis
of linearity corresponds to H1

0
: δ′

1
= δ′

2
= δ′

3
= δ′

4
= 0. Under this null the

test statistic has asymptotically a χ2 distribution with 4(p + 1) degrees of
freedom. In finite samples, however, the χ2 test can be oversized. To this
end, the F version is preferred because it has better small size properties.
The selection procedure between ESTAR and LSTAR changes to

1. Test the null of LSTAR nonlinearity, HL
0

: δ′

2
= δ′

4
= 0, with an F test,

(FL).

2. Test the null of ESTAR nonlinearity, HE
0

: δ′

1
= δ′

3
= 0, with an F test,

(FE).

3. If the P value of FL is lower than FE then select an ESTAR. Otherwise,
select an LSTAR.

The use of the F test is based on the assumption that the error term in
Equation (2) is independent, identically and normally distributed. However,
the assumption of constant conditional variance may be too strict when it
comes to empirical applications.

3.1 Dealing with Conditional Heteroskedasticity

Since the work of Engle (1982) and Bollerslev (1986) it has become a stylized
fact that the residuals of many dynamic regression models exhibit conditional
heteroskedasticity. The evidence of conditional heteroskedasticity becomes
overwhelming as we move from low frequencies of data (annual, quarterly) to
high frequencies (monthly,weekly, daily) and especially ultra high frequencies
(five minutes, tick-by-tick) (see, e.g., Dacorogna et al. 2001).
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Applications of STAR models and, therefore, of the corresponding linear-
ity tests cover all possible frequencies. Notably, Skalin and Teräsvirta (1999)
investigate the properties of the Swedish business cycle by fitting STAR mod-
els to annual macroeconomic time series, which cover the period 1861 to 1988.
Long spans of annual data are also employed in studies examining the pres-
ence of nonlinearities in real exchange rates (Lothian and Taylor 2006; Paya
and Peel 2006a). Gallagher and Taylor (2001) investigate the risky arbitrage
hypothesis by fitting an ESTAR-ARCH model to quarterly data on the U.S.
market log dividend-price ratio. Further, Taylor et al. (2001), Taylor and
Kilian (2003) and Paya et al. (2003) show that ESTAR models can capture
the behavior of quarterly and monthly real exchange rates in the post Bret-
ton Woods era. A similar conclusion is derived for the futures basis of the
S&P 500 and the FTSE 100 by Monoyios and Sarno (2002), who use daily
data. A model that allows simultaneous modeling of the first and second
moments is the STAR-Smooth Transition GARCH (STAR-STGARCH) in-
troduced by Lundbergh and Teräsvirta (1998). The model is applied to two
daily series, the Swedish OMX index and the Japanese yen U.S. dollar ex-
change rate. In a related study Chan and McAleer (2002) investigate the
statistical properties of the STAR-GARCH model and fit the model to the
S&P 500 daily returns. Taylor et al. (2000) examine arbitrage opportunities
in the FTSE 100 using 1,2 and 5 minutes frequency data. The authors adopt
an Exponential Smooth Transition Error Correction model to obtain trans-
actions costs and trade speeds faced by arbitrageurs who exploit mispricing
of FTSE 100 futures contracts relative to spot prices. Their results indicate
significant ARCH type heteroskedasticity in the estimated residuals.

Linearity tests against smooth transition nonlinearity are implemented in
most of the above studies. The question that naturally arises is whether these
tests are robust to a time varying conditional variance and, if not, whether
there are ways of robustification.

In this study, we focus on the Escribano and Jordá (1999) test and adopt
a non parametric approach to deal with conditional heteroskedasticity of
unknown form in Equation (12). The use of parametric models requires
knowledge of the type and the precise form of conditional heteroskedastic-
ity. However, it is unlikely that such information is available in practice.
Therefore, we examine the performance of the HCCME of White (1980),
two HCCMEs examined by MacKinnon and White (1985), and, finally, the
Fixed Design Wild Bootstrap of Kreiss (1997) and Gonçalves and Kilian
(2004, 2007).
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3.2 Hypothesis Testing

A general representation for all the linear auxiliary regressions of the previous
section is

yt = δ′zt + ut, (13)

For the Escribano and Jordá (1999) test δ = (δ′

0
, . . . , δ′

4
)′ and zt = (ζ ′

0,t, . . . , ζ
′

4,t)
′

with ζj,t = xts
j
t , for j = 0, . . . , 4. The null hypothesis of linearity, ESTAR or

LSTAR can be written as H0: Rδ̂ = 0, where R is the q × 5(p + 1) selector
matrix with q denoting the number of restrictions. Testing for linearity re-
quires 4(p + 1) restrictions while for the ESTAR and LSTAR 2(p + 1). The
Wald form of the test statistic can be written as

W =
(
Rδ̂

)
′
(
RΨ̂R′

)
−1 (

Rδ̂
)

, (14)

where Ψ̂ = (Z ′Z)−1Z ′Ω̂Z(Z ′Z)−1 denotes the covariance matrix of the esti-

mates δ̂. Consistency of the estimator Ψ̂ is required when drawing inferences.
Assuming that the residuals, ut, are independent, identically and normally
distributed with variance σ2

u yields

LS : Ω̂ = σ̂2

uI, (15)

where I is the identity matrix. In this case, W/q is F distributed under the
null.

However, in the presence of heteroskedasticity the diagonal elements of Ω̂

will not be constant. It follows that the ordinary least squares estimator of
the covariance matrix (LS) will be biased and conventional tests will generally
have non standard distributions (e.g., Flachaire 2005; Long and Ervin 2000).
In this case, HCCMEs are usually employed by researchers. Eicker (1963) and
White (1980) propose the following heteroskedasticity consistent estimator

HC0 : Ω̂ = diag(û2

t ), (16)

which allows asymptotic inference. The idea is to use û2

t to estimate the
variance of the error term at time t. Unfortunately, the HC0 and F tests
can be heavily biased in finite samples. To this end, MacKinnon and White
(1985), based on the work of Hinkley (1977), Horn et al. (1975) and Efron
(1982), consider three alternative HCCMEs. The two estimators employed
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in this study are

HC2 : Ω̂ = diag

(
û2

t

1 − htt

)
, (17)

HC3 : Ω̂ = diag

(
û2

t

(1 − htt)2

)
, (18)

where htt = zt(Z
′Z)−1z′t is the tth diagonal element of the “hat” matrix.

The authors show that both HC2 and HC3 lead to a marked improvement
in small samples. Further, Long and Ervin (2000) suggest using HC3 when
the sample size is less than 250 observations. Despite the fact that the
latter estimators are superior to HC0, they too are biased. Consequently,
tests based on asymptotic theory may lead to incorrect inferences in finite
samples.

Rather than relying on hypothesis tests based on asymptotic theory, boot-
strap methods can be employed for conducting statistical inference. The ra-
tionale in bootstrap methods is to approximate the finite sample distribution
of the test statistic under the null by simulation. In small samples, bootstrap
tests may lead to a significant improvement in term of the error in rejection
probabilities (see, e.g, MacKinnon 2002, 2006).

A bootstrap technique which deals with heteroskedasticity of unknown
form is the Wild Bootstrap. The asymptotic validity of the Wild Bootstrap
for linear regressions is established in Wu (1986), Liu (1988) and Mammen
(1993). Kreiss (1997) and Gonçalves and Kilian (2004, 2007) extend the
analysis to stationary autoregressions with conditional heteroskedastic errors.
As far as linearity tests are concerned, Hurn and Becker (2007) illustrate that
the Wild Bootstrap improves upon the neural network test of Teräsvirta
et al. (1993) when there is GARCH type conditional heteroskedasticity in
the residuals.

We now describe the Fixed Design Wild Bootstrap procedure for testing
the hypothesis of linearity, ESTAR nonlinearity or LSTAR nonlinearity

1. Estimate Equation (13) and compute the F statistic, F̃ .

2. Estimate the restricted model and obtain the estimated coefficient vec-
tor δ̂r and the restricted residuals ûr,t.

3. Generate B “fake” series according to null DGP

yb
t = δ̂′

rzt + ǫb
t ,

11



where the residuals ǫb
t are constructed by multiplying the estimated

restricted residuals ûr,t by a random variable ηt.The ηt must be mu-
tually independent drawings from a distribution independent of the
original data with mean 0 and variance 1. Liu (1988) and Davidson
and Flachaire (2001) suggest using the Rademacher distribution

ηt =

{
−1 with probability p = 0.5 ,

+1 with probability (1 − p).

The Rademacher distribution has the properties E[ηt] = 0, E[η2

t ] = 1,
E[η3

t ] = 0, and E[η4

t ] = 1. A consequence of these properties is that any
heteroskedasticity or symmetric non normality in the estimated residu-
als ûr,t is preserved in the newly created residuals. The Wild Bootstrap
matches the moments of the observed error distribution around the es-
timated regression function at each design point, ŷb

t . Liu (1988) and
Mammen (1993) show that the asymptotic distribution of the Wild
Bootstrap statistics are the same as the statistics they try to mimic.

4. Regress each “fake” series yb on Z and compute the F statistic, F̃b,
so as to obtain the empirical distribution for the F statistic under the
null.

5. Compute the P value as the percentage of times the simulated statistic
F̃b is more extreme than the original statistic F̃

Pb =
1

B

B∑

b=1

I(F̃ ≤ F̃b)

where I(A) is the indicator function, which takes the value of 1 if event
A occurs and 0 otherwise.

6. Reject the null if Pb is smaller than the chosen significance level.

In the next section, we conduct Monte Carlo simulation exercises in order
to examine the accuracy of the inference procedures under different error
processes and sample sizes.
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4 MONTE CARLO SIMULATION

As aforementioned, the LM test of Teräsvirta (1994) performs poorly, in
terms of size, when there is conditional heteroskedasticity. On the other hand,
the robust version proposed by Granger and Teräsvirta (1993) appears to
lack power (Lundbergh and Teräsvirta 1998). In this section, we investigate
whether there is a similar effect on the Escribano and Jordá (1999) test and
the performance of the heteroskedasticity robust inference techniques.

The simulation exercises focus on a simple ESTAR(1) conditional mean
equation examined by Escribano and Jordá (2001)

yt = π1,1yt−1 + π2,1yt−1[1 − exp(−γy2

t−d)] + ǫt, t = 1, . . . , T, (19)

where π1,1 = 0.3 and π2,1 = −0.9. For the error term we adopt various condi-
tional heteroskedastic processes. The first type is the standard GARCH(1,1)
proposed by Bollerslev (1986) to capture volatility clustering,

ǫt = eth
1/2

t , ht = ω + αǫ2

t−1
+ βht−1, et ∼ N (0, 1) (20)

where ht denotes the conditional variance at time t. We follow Gonçalves and
Kilian (2004) and set (α, β) ∈ {(0, 0), (0.5, 0), (0.3, 0.65), (0.2, 0.79), (0.05,
0.94)} and ω = 1−α−β, which implies an unconditional variance of unity. We
also consider ARCH type models which allow asymmetric effects of positive
and negative shocks on volatility (see Bollerslev et al. 1993). In particular,
we employ the Exponential GARCH (EGARCH) model of Nelson (1991),
the Asymmetric GARCH (AGARCH) of Engle (1990) and the GJR GARCH
model proposed by Glosten et al. (1993).

EGARCH:

ǫt = eth
1/2

t , ln(ht) = −0.23 + 0.9 ln(ht−1) + 0.25
(
e2

t−1
− 0.3et−1

)
,

et ∼ N (0, 1). (21)

AGARCH:

ǫt = eth
1/2

t , ht = 0.0216 + 0.6896ht−1 + 0.3174 (ǫt−1 − 0.1108)2 ,

et ∼ N (0, 1). (22)
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GJR GARCH:

ǫt = eth
1/2

t , ht = 0.005 + 0.7ht−1 + 0.28
(
ǫ2

t−1
− 0.23ǫt−1

)
,

et ∼ N (0, 1). (23)

The form of the error processes and the parameter values are based on Engle
and Ng (1993). The above models are motivated by the so-called “leverage
effect” characterizing stock returns. This effect was first noted by Black
(1976), “a drop in the value of the firm will cause a negative return on its

stock, and will usually increase the leverage of the stock . . .That rise in the

debt-equity ratio will surely mean a rise in the volatility of the stock”. An
alternative explanation is the asymmetric reaction of asset markets to “good”
and “bad” news.

Finally, we consider a stochastic volatility model proposed by Taylor
(1986) and employed by Shephard (1996) to capture the volatility of re-
turns on the Nikkei index and the Japanese yen and Deutsche mark against
the pound sterling.

ǫt = et exp(ht), ht = 0.951ht−1 + 0.5et,

(ǫt, et) ∼ N (0, diag(0.18, 1)). (24)

We restrict the experiments to sample sizes of 100, 250, 500, and 1000
observations, which cover the majority of data sets used in applied work.
Larger sizes, such as the ones available in ultra high frequency studies, are
not examined due to the computationally intensive nature of the experiment.
However, our results are indicative of the change of the performance of the
tests with the sample size. The nominal significance level is set to 5% and
the number of simulated series as well as the number of Wild Bootstrap
replications per series is 1000.2 The first 100 observations are discarded to
avoid initialization effects.

4.1 Empirical Size of Linearity Tests

In order to investigate the size properties of the tests, we set the smoothness
parameter γ equal to 0. Hence, Equation (19) becomes an AR(1) model.

2In this case, the overall significance level may differ from the 5% due to multi-step
testing.
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Tables 1 and 2 report results for the null hypotheses of linearity and the
percentage of times an ESTAR model is selected rather than an LSTAR.
The percentage of LSTAR selections can be computed by subtracting the
percentage of ESTAR selections from the empirical size of the tests. Results
for the tests based on the least squares covariance matrix estimator, the
three heteroskedasticity consistent covariance matrix estimators and the Wild
Bootstrap are presented in the columns labeled LS, HC0, HC2 and HC3, and
WB, respectively. In addition, Figure 2 provides a visual view of the error
of rejection probability (the difference between the empirical size and the
nominal level of a test) for stationary GARCH processes.

FIGURE 2

Starting with the standard F version of the Escribano and Jordá test (col-
umn LS), several interesting conclusions emerge. First, the test may exhibit
serious size distortions. The null of linearity can be rejected up to 81% of
the times for a nominal significance level of 5% when the error process is
AGARCH or GJR GARCH and T = 1000. These size distortions are much
more severe than the ones reported in Lundbergh and Terasvirta (1998) for
the Teräsvirta (1994) test. It should be noted that the two simulation exper-
iments differ. The authors examine an AR(4) model with a different GJR-
GARCH residual process. Therefore, direct comparisons between the two
tests cannot be made. For the GARCH models there is a positive relation-
ship between the degree of oversizing and the value of the ARCH parameter
(see Figure 2). Second, the bias of the empirical size can rapidly increase
with the sample size. Hence, application of the test to large data sets, such
as the ones available for daily or intra-daily stock returns and exchange rate
returns, is most likely to result in false inference. Finally, it appears that the
test does not favor either alternative (ESTAR and LSTAR), which is also
true for the remaining inference techniques.

TABLE 1

Turning to the heteroskedasticity robust tests, we observe a strong resem-
blance between the properties of HC0 and HC2. Both tests seriously overre-
ject the null hypothesis of linearity even when the errors are homoskedastic.
Furthermore, oversizing does not appear to decrease (or increase) as we move
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to larger sample sizes. It should be noted that HC2 gives substantially bet-
ter results than HC0. A significant reduction in size distortions is achieved
by employing the third HCCME, HC3. The associated test leads to only
moderate oversizing with the empirical size reaching a maximum of 16%.
However, tests based on HC3 are outperformed by the Fixed Design Wild
Bootstrap. The latter method gives almost always the best results and its
empirical size is very close to the nominal level irrespective of the sample
size and the error process. In the case of homoskedasticity the performance
of the Wild Bootstrap is similar to the LS test.

TABLE 2

4.2 Empirical Size Adjusted Power of Linearity Tests

Clearly, LS, HC0, and HC2 based tests are seriously oversized. It follows
that their empirical power may take large values, which can, partially, be
attributed to the presence of conditional heteroskedasticity. In order to make
comparisons between alternative methods meaningful, we adjust for the bias
in the empirical size. Empirical size adjusted power is reported for all tests
but the Fixed Design Wild Bootstrap, for which no size adjustment is made.
This should not have a significant impact on inference, since the empirical
size of the Wild Bootstrap is very close to the nominal level. For the power
experiments, we set γ = 1 and the transition variable equal to yt−1. The
details for the simulation procedure are the same as before. Tables 3 and 4
report the results.

A broad tendency that emerges is that the performance of all tests de-
pends crucially on the type of conditional heteroskedasticity. Tests based
on the HCCMEs and the ordinary least squares covariance matrix, generally,
perform poorly in the presence of conditional heteroskedasticity, with none of
them being superior to the others. Furthermore, in many cases these meth-
ods have virtually no power to discriminate between linear and nonlinear in
mean processes.

TABLE 3

The Fixed Design Wild Bootstrap is by far the best method. Its superiority
becomes evident in the presence of time varying conditional variance. For the
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majority of conditional heteroskedastic processes its power is relatively high
and increases with the sample size. While in the case of homoskedasticity
its performance is similar or better than the F test. Unfortunately, the
ability of the Wild Bootstrap to detect nonlinearity in the mean is not always
satisfactory. For the stochastic volatility process of Shephard (1996) the
power of the Fixed Design Wild Bootstrap is extremely low (less than 20%),
irrespective of the sample size. Hence, there are cases where all inference
techniques perform poorly.

TABLE 4

4.3 Nonlinear Model Specification

So far we assumed that the transition variable, or equivalently the delay pa-
rameter, is known. However, in real world application the transition variable
has to be determined from the data. The selection of a misspecified model is
very likely to pose problems in the subsequent stage of estimation. Teräsvirta
(1994), inspired by the work of Tsay (1989) on TAR models, suggests choos-
ing the delay parameter that minimizes the P value of the linearity test. The
basic idea behind this approach is that on average the power of a correctly
specified model should be higher than the power of a misspecified one.

In the last simulation experiments we follow Teräsvirta (1994) and in-
vestigate the ability of the tests to identify the correct transition variable.
The model design is the same as before, except that we consider three delay
parameters, d = 1, 2, 3. The same delay parameters specify the candidate
transition variables in the linearity tests. We restrict our attention to the
GARCH(1,1) process with α = 0.3 and β = 0.65. This choice is motivated
by the severe oversizing of the LS and HC tests. Table 5 shows the selec-
tion frequencies of the transition variables. Note, that these are based on
the fraction of cases where linearity is rejected. Hence, the results show the
probability of choosing the correct delay parameter given linearity is rejected.

TABLE 5

Obviously, the use of HC0 and HC2 leads frequently to the selection of mis-
specified models with HC2 giving again better results. The probability of
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choosing the wrong transition variable is substantially lower than half when
the value of the true delay parameter is one and slightly exceeds half for
values two and three. On the contrary, HC3, LS and the Fixed Design Wild
Bootstrap appear to perform reasonably well. Overall, the HC3 is outper-
formed by the ordinary least squares covariance matrix, which is in turn
outperformed by the Fixed Design Wild Bootstrap. The difference between
the first two methods and the Wild Bootstrap is particularly apparent when
the true d = 1. The correct selection frequencies for the LS and the HC3
tests vary between 46% and 60%, which implies a high probability of choos-
ing a misspecified model. Whilst for the Wild Bootstrap the corresponding
bounds are 73% and 83%. The behavior of the Wild Bootstrapping is stable
across sample sizes and model specifications.

Clearly, the Wild Bootstrap is a valuable technique for testing linearity
and, subsequently, specifying STAR models irrespective of the conditional
heteroskedasticity of the error process. In the majority of cases it results
in valid inferences for the mean equation of a series. To this end, it allows
modeling STAR processes when the errors are homoskedastic as well as mod-
els which STAR nonlinearity in the mean and conditional heteroskedasticity
in the disturbances, such as the STAR-GARCH and the STAR-STGARCH
models of Chan and McAleer (2002) and Lundbergh and Teräsvirta (1998),
respectively.

5 EMPIRICAL APPLICATIONS

The simulation experiments illustrate the likelihood of finding spurious non-
linearity in the mean of economic and financial series when commonly used
F tests are employed and volatility changes occur across time. Since this
problem becomes apparent for large sample sizes it would be interesting to
apply the linearity tests to empirical data sampled at relatively high frequen-
cies. Therefore, we employ financial time series for which volatility clustering
is a well-known fact and high frequency data are available. The presence of
time varying volatility in financial markets has been documented in numerous
studies, going back to Mandelbrot (1963) and Fama (1965). Notably, Man-
delbrot (1963, p. 418) wrote for stock market returns ‘ ‘. . . large changes tend

to be followed by large changes -of either sign- and small changes tend to be

followed by small changes . . . ”. A similar phenomenon is observed for other
asset returns, such as exchange rates (Baillie and Bollerslev 1991, 2002).

18



However, time varying volatility is not constraint to high frequency data.
The findings of several empirical studies suggest that the volatity of the real
exchange rate tends to vary across nominal exchange rate regimes (see, e.g.,
Mussa 1986). As a consequence empirical models employing long spans of
data typically assume a non constant conditional variance of the error term
(see, e.g., Engel and Kim 1999; Lothian and Taylor 2006; Paya and Peel
2006a). To this end, we employ the Lothian and Taylor (1996) two century
data for the dollar-sterling real exchange rate.

A number of theoretical and empirical studies suggest that exchange rate
target zones and exchange rate policies, such as “leaning against the wind”,
may lead to threshold type nonlinearity in the mean of the exchange rate (see,
e.g., Krugman 1991; Lundbergh and Teräsvirta 2006; Hsieh 1992). Similarly,
factors such as agent heterogeneity, transactions costs or the sunk costs of
international arbitrage can induce smooth transition nonlinearity in the the
deviation process of asset prices from their fundamental value (Dumas 1992;
Berka 2002; Kilian and Taylor 2001). Michael et al. (1997), Taylor et al.
(2001) and Taylor and Kilian (2003) among others show that ESTAR models
can parsimoniously fit a number of real exchange rates. In the context of
stock index futures markets, the findings of Yadav et al. (1994), Dwyer et al.
(1996) and Monoyios and Sarno (2002) suggest that TAR and STAR models
are capable of explaining the behavior of the futures basis of major stock
indices.

The data set consists of daily closing prices of two stock market indices,
namely the Dow Jones and the S&P 500, two nominal exchange rates, the
yen-dollar and dollar-sterling, and daily spot and futures prices of the FTSE
100. All series but the last two cover the period from January 1st, 1991 to
the December 31st, 2002, which gives a total of 3,131 observations. The data
for the spot and future prices of the FTSE 100 span the period January 1st,
1988 to December 31st, 1998, resulting in 2,780 observations. The data were
obtained from Datastream. We calculate returns on the Dow Jones, the S&P
500, the dollar-sterling and yen-dollar nominal exchange rates as logarithmic
differences of daily closing prices scaled by a factor of 100. Further, we
compute the logarithmic FTSE 100 basis bt according to

bt,k = ln

(
Ft,k

Pt

)
, (25)

where Ft,k denotes the future price for delivery of the stock at time k ≥ t and
Pt is the the spot price at time t. Finally, we extend the dollar-sterling real
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exchange rate (RER) data set of Lothian and Taylor (1996) by using annual
data for the U.S. and U.K. consumer price indices and the dollar-sterling
nominal exchange rate obtained from the International Financial Statistics
database. The extended data set covers the period from 1791 to 2005.

FIGURE 3

As a preliminary exercise we examine if the series exhibit conditional het-
eroskedasticity by employing the ARCH LM test derived by Engle (1982).
The test is based on the regression equation

ǫ̂2

t = µ +

q∑

i=1

aiǫ̂
2

t−i + vt, (26)

where ǫ̂t are the estimated residuals of AR models fitted to the series and µ
and ai, i = 1, . . . , q, are the regression parameters. The lag length of the AR
models is determined by using the AIC information criterion for all series but
the FTSE 100 basis and the sterling dollar real exchange rate. For the latter
two series we follow Monoyios and Sarno (2002) and Lothian and Taylor
(2006) and set the lag length to five and two, respectively. This choice is
supported by visual inspection of the partial autocorrelation function. The
null hypothesis of no ARCH effects is H0: ai = 0 ∀ i. Let T denote the
sample size, the test statistic given by T × R2 is asymptotically distributed
as χ2 with q degrees of freedom.

TABLE 6

Not surprisingly, Table 6 shows that the null hypothesis can be rejected at
all conventional levels of significance for all high frequency series. Note,
however, that like nonlinear in mean tests have power in detecting ARCH
effects, ARCH tests have power in detecting nonlinearity in mean (Lee et al.
1993; Blake and Kapetanios 2007). Therefore, rejection of the null hypothesis
may be due to the presence of STAR type nonlinearity.

Next, we apply the linearity test of Escribano and Jordá (1999) as well
as the four robust versions. The choice of the lag order is the same with the
one used for the ARCH LM test and the delay parameter is d = 1, . . . , 4.
Table 7 reports the P values for the null of linearity corresponding to each
transition variable and the selected model.
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TABLE 7

Overall, the results are in line with the findings of the simulation experiments.
Starting with the returns on the the Dow Jones, the S&P 500 the dollar-
sterling and the yen-dollar exchange rate, the Escribano and Jordá (1999)
test as well as the HC0 robustification reject the null of linearity for all
transition variables. The corresponding marginal significance level is less
than 1% in all cases, indicating that the series are characterized by STAR
nonlinearity. However, the use of the HC2, HC3 and WB tests results in
a substantial decrease in the number of rejections. At the 5% significance
level linearity cannot be rejected in 25%, 62.5% and 93.75% of the cases,
respectively. Further, there is a wide disparity between the magnitudes of
the tests’ P values. An illustrative example is the returns on the yen-dollar
exchange rate. For d = 1 the P values of the LS, HC0 and HC2 tests are
virtually zero, while the corresponding P values of the HC3 and WB tests
are close to one. The only series for which all methods produce qualitatively
similar results with respect to the linearity test is the returns on the dollar-
sterling nominal exchange rate.

Turning to the basis of the FTSE 100 there is strong evidence of non-
linearity in mean. At the 5% significance level, the Escribano and Jordá
(1999) test indicates nonlinearity for d = 1, 2, the HC0 and HC2 based tests
for d = 1, 2, 3 and the last two tests only for d = 1. Overall, the results
support setting d = 1 since linearity is rejected at all conventional levels of
significance irrespective of the test employed. These findings are in line with
the theoretical and empirical analysis of Monoyios and Sarno (2002).

As far as the real exchange rate (RER) series is concerned, the HC0 and
the Wild Bootstrap tests can reject the null hypothesis of linearity at the
5% significance level. Both tests support the exponential transition function
and, hence, symmetric adjustment of the real exchange rate series. For the
LS and HC2 tests the smallest P values are close to the 10% significance,
while for HC3 it is substantially larger. Given the results of the ARCH LM
test for the dollar-sterling real exchange rate and the superior performance
of the Wild Bootstrap, even in the case of homoskedasticity, these findings
may be due to the low power of tests based on the HCCMEs when applied to
relatively small samples. In addition, nonlinearity tests generally tend not to
reject linearity when applied to temporally aggregated nonlinear processes
(see, e.g., Granger and Lee 1999; Paya and Peel 2006b). Therefore, our
findings provide evidence of nonlinearity in the mean of the real exchange
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rate data.
Overall, the above empirical applications together with the Monte Carlo

experiments illustrate the discrepancy between the conclusions drawn using
different inference techniques.

6 CONCLUSION

The specification stage of STR models consists of a sequence of tests, which
are typically based on the assumption of independent and identically dis-
tributed errors. In this paper we relaxed this assumption and examined the
impact of conditional heteroskedasticity on the tests’ performance. We also
considered four heteroskedasticity robust versions based on HCCMEs and
the Fixed Design Wild Bootstrap. Our findings illustrate the dangers of us-
ing conventional tests and tests based on HCCMEs. In particular, these tests
can exhibit severe size distortions, which increase with the sample size and/or
have very low size adjusted power. Further, they frequently lead to the se-
lection of misspecified nonlinear models. Among these methods a HCCME
considered by MacKinnon and White (1985) appears to have the best per-
formance. On the other hand, the Fixed Design Wild Bootstrap remedies,
at least to a large extend, the deficiencies outlined, allowing inference for
both conditional heteroskedastic and homoskedastic errors. Consequently,
the application of the Wild Bootstrap provides a valuable alternative to con-
ventional tests.
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Escribano, A. and Jordá, O. (1999), “Improved Testing and Specification of
Smooth Transition Regression Models,” in Nonlinear Time Series Analysis

of Economic and Financial Data, ed. Rothman, P., Dordrecht: Kluwer
Academic Publishers, pp. 289–320.

— (2001), “Testing Nonlinearity: Decision Rules for Selecting between Logis-
tic and Exponential STAR Models,” Spanish Economic Review, 3, 193–209.

Fama, E. F. (1965), “The Behavior of Stock Prices,” Journal of Business,
38, 34–105.

Flachaire, E. (2005), “Bootstrapping Heteroskedastic Regression Models:
Wild Bootstrap vs. Pairs Bootstrap,” Computational Statistics and Data

Analysis, 49, 361–376.

Gallagher, L. A. and Taylor, M. P. (2001), “Risky Arbitrage, Limits of Arbi-
trage, and Nonlinear Adjustment in the Dividend–Price Ratio,” Economic

Inquiry, 39, 524–36.

Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993), “On the Relation
between the Expected Value and the Volatility of the Nominal Excess
Return on Stocks,” Journal of Finance, 48, 1779–1801.
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7 TABLES & FIGURES

Table 1: Empirical Size of Wald F Tests

DGP: yt = 0.3yt−1 + ǫt, ǫt = eth
1/2

t ,
ht = ω + αu2

t−1
+ βht−1, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T α β LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.00 0.00 0.05 0.39 0.21 0.09 0.06 0.02 0.19 0.10 0.05 0.03
0.50 0.00 0.37 0.59 0.30 0.13 0.08 0.18 0.29 0.15 0.07 0.04
0.30 0.65 0.28 0.55 0.28 0.12 0.06 0.14 0.27 0.13 0.04 0.03
0.20 0.79 0.20 0.50 0.23 0.09 0.06 0.10 0.23 0.11 0.04 0.03
0.05 0.94 0.07 0.40 0.20 0.10 0.06 0.04 0.19 0.09 0.04 0.03

250 0.00 0.00 0.04 0.32 0.18 0.10 0.05 0.01 0.15 0.09 0.04 0.02
0.50 0.00 0.50 0.60 0.32 0.13 0.08 0.25 0.33 0.18 0.06 0.05
0.30 0.65 0.47 0.58 0.30 0.12 0.08 0.22 0.28 0.16 0.05 0.05
0.20 0.79 0.38 0.53 0.29 0.13 0.06 0.18 0.28 0.15 0.06 0.03
0.05 0.94 0.10 0.39 0.21 0.11 0.05 0.05 0.21 0.12 0.05 0.02

500 0.00 0.00 0.04 0.28 0.16 0.09 0.06 0.01 0.14 0.08 0.04 0.02
0.50 0.00 0.64 0.63 0.35 0.16 0.08 0.36 0.38 0.22 0.09 0.05
0.30 0.65 0.62 0.60 0.34 0.14 0.07 0.33 0.34 0.20 0.08 0.04
0.20 0.79 0.52 0.51 0.28 0.11 0.05 0.26 0.29 0.16 0.07 0.03
0.05 0.94 0.11 0.33 0.19 0.10 0.04 0.05 0.20 0.11 0.05 0.02

1000 0.00 0.00 0.06 0.24 0.15 0.11 0.06 0.04 0.14 0.08 0.05 0.03
0.50 0.00 0.70 0.57 0.35 0.13 0.07 0.36 0.36 0.21 0.07 0.05
0.30 0.65 0.72 0.56 0.30 0.14 0.07 0.39 0.35 0.20 0.08 0.04
0.20 0.79 0.66 0.50 0.29 0.14 0.06 0.34 0.28 0.17 0.07 0.03
0.05 0.94 0.18 0.34 0.21 0.12 0.06 0.10 0.21 0.12 0.06 0.03

NOTE: The table reports the empirical size of the LS, HC0, HC2, HC3 and the WB
linearity tests (H0: Linearity) as well as the percentage of times an ESTAR model is
selected rather than an LSTAR (ESTAR selection). The nominal significance level
is 5%.
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Table 2: Empirical Size of Wald F Tests

AR-EGARCH

DGP: yt = 0.3yt−1 + ǫt, ǫt = eth
1/2

t ,
ln(ht) = −0.23 + 0.9 ln(ht−1) + 0.25

(
e2

t−1
− 0.3et−1

)
, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.37 0.60 0.30 0.12 0.08 0.18 0.30 0.16 0.06 0.04
250 0.57 0.64 0.34 0.13 0.09 0.27 0.34 0.18 0.06 0.06
500 0.69 0.64 0.35 0.15 0.08 0.35 0.39 0.21 0.08 0.06
1000 0.79 0.63 0.34 0.13 0.07 0.41 0.39 0.20 0.06 0.04

AR-AGARCH

DGP: yt = 0.3yt−1 + ǫt, ǫt = eth
1/2

t ,

ht = 0.0216 + 0.6896ht−1 + 0.3174 (ǫt−1 − 0.1108)2, et ∼ N (0, 1).
H0: Linearity ESTAR selection

T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB
100 0.29 0.57 0.26 0.09 0.06 0.14 0.26 0.12 0.04 0.03
250 0.55 0.59 0.30 0.15 0.08 0.26 0.29 0.16 0.08 0.04
500 0.71 0.57 0.31 0.11 0.06 0.35 0.34 0.17 0.06 0.03
1000 0.81 0.57 0.29 0.12 0.05 0.41 0.33 0.16 0.05 0.02

AR-GJR-GARCH

DGP: yt = 0.3yt−1 + ǫt, ǫt = eth
1/2

t ,
ht = 0.005 + 0.7ht−1 + 0.28

(
ǫ2

t−1
− 0.23ǫt−1

)
, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.29 0.59 0.28 0.11 0.07 0.14 0.27 0.12 0.05 0.04
250 0.53 0.58 0.31 0.13 0.07 0.26 0.32 0.16 0.06 0.04
500 0.67 0.59 0.35 0.12 0.06 0.33 0.34 0.20 0.06 0.03
1000 0.81 0.57 0.30 0.15 0.07 0.38 0.32 0.17 0.07 0.04

AR-Stochastic-Volatility
DGP: yt = 0.3yt−1 + ǫt, ǫt = et exp(ht),

ht = 0.951ht−1 + 0.5et, (ǫt, et) ∼ N (0, diag(0.18, 1)).
H0: Linearity ESTAR selection

T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB
Continued on Next Page. . .
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Table 2: Empirical Size of Wald F Tests(Cont’d.)

100 0.28 0.59 0.28 0.07 0.06 0.13 0.27 0.13 0.04 0.03
250 0.45 0.59 0.32 0.11 0.07 0.23 0.28 0.16 0.04 0.05
500 0.59 0.59 0.30 0.11 0.06 0.30 0.32 0.15 0.06 0.03
1000 0.71 0.59 0.32 0.13 0.06 0.38 0.34 0.18 0.07 0.03

NOTE: The table reports the empirical size of the LS, HC0, HC2, HC3
and the WB linearity tests (H0: Linearity) as well as the percentage
of times an ESTAR model is selected rather than an LSTAR (ESTAR
selection). The nominal significance level is 5%.

Table 3: Empirical Size Adjusted Power of Wald F Tests

DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−1
)]ǫt, ǫt = eth

1/2

t ,
ht = ω + αu2

t−1
+ βht−1, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T α β LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.00 0.00 0.23 0.07 0.10 0.14 0.30 0.20 0.05 0.08 0.12 0.26
0.50 0.00 0.02 0.07 0.04 0.09 0.27 0.02 0.05 0.03 0.07 0.24
0.30 0.65 0.10 0.12 0.11 0.13 0.28 0.07 0.07 0.07 0.10 0.25
0.20 0.79 0.17 0.14 0.19 0.17 0.28 0.14 0.10 0.15 0.15 0.25
0.05 0.94 0.26 0.12 0.12 0.17 0.32 0.23 0.08 0.09 0.15 0.29

250 0.00 0.00 0.65 0.11 0.22 0.37 0.68 0.64 0.10 0.21 0.36 0.66
0.50 0.00 0.04 0.08 0.08 0.10 0.40 0.03 0.06 0.07 0.09 0.39
0.30 0.65 0.10 0.09 0.10 0.17 0.48 0.08 0.06 0.08 0.16 0.47
0.20 0.79 0.29 0.13 0.22 0.29 0.53 0.27 0.11 0.20 0.29 0.51
0.05 0.94 0.55 0.15 0.21 0.27 0.63 0.53 0.11 0.19 0.26 0.61

500 0.00 0.00 0.92 0.42 0.63 0.76 0.92 0.91 0.41 0.62 0.76 0.91
0.50 0.00 0.05 0.07 0.06 0.20 0.57 0.04 0.05 0.05 0.18 0.56
0.30 0.65 0.12 0.06 0.12 0.23 0.56 0.10 0.04 0.10 0.21 0.54
0.20 0.79 0.45 0.16 0.28 0.43 0.67 0.43 0.14 0.25 0.41 0.66
0.05 0.94 0.79 0.29 0.45 0.62 0.81 0.78 0.27 0.44 0.62 0.80

1000 0.00 0.00 1.00 0.93 0.97 0.99 1.00 0.99 0.92 0.97 0.99 0.99
0.50 0.00 0.10 0.06 0.09 0.33 0.70 0.09 0.04 0.08 0.32 0.70
0.30 0.65 0.15 0.10 0.21 0.33 0.63 0.13 0.06 0.19 0.32 0.61

Continued on Next Page. . .
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Table 3: Empirical Size Adjusted Power of Wald F Tests(Cont’d.)

H0: Linearity ESTAR selection
T α β LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

0.20 0.79 0.54 0.17 0.34 0.49 0.73 0.51 0.15 0.32 0.48 0.72
0.05 0.94 0.94 0.40 0.65 0.78 0.94 0.93 0.38 0.64 0.77 0.93

NOTE: The table reports the empirical size adjusted power of the LS, HC0, HC2,
and HC3 linearity tests (H0: Linearity) and the power of the WB tests. It also
shows the percentage of times an ESTAR model is selected rather than an LSTAR
(ESTAR selection). The nominal significance level is 5%.

Table 4: Empirical Size Adjusted Power of Wald F Tests

ESTAR-EGARCH

DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−1
)] + ǫt, ǫt = eth

1/2

t ,
ln(ht) = −0.23 + 0.9 ln(ht−1) + 0.25

(
e2

t−1
− 0.3et−1

)
, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.04 0.08 0.05 0.07 0.20 0.03 0.05 0.04 0.05 0.15
250 0.03 0.07 0.06 0.07 0.22 0.02 0.04 0.04 0.06 0.19
500 0.04 0.05 0.07 0.07 0.24 0.02 0.03 0.04 0.05 0.22
1000 0.04 0.05 0.05 0.07 0.26 0.02 0.03 0.03 0.06 0.23

ESTAR-AGARCH

DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−1
)] + ǫt, ǫt = eth

1/2

t

ht = 0.0216 + 0.6896ht−1 + 0.3174 (ǫt−1 − 0.1108)2, et ∼ N (0, 1).
H0: Linearity ESTAR selection

T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB
100 0.08 0.11 0.07 0.17 0.23 0.06 0.06 0.05 0.14 0.20
250 0.07 0.08 0.10 0.15 0.33 0.04 0.05 0.08 0.14 0.32
500 0.08 0.08 0.10 0.17 0.34 0.05 0.04 0.08 0.14 0.31
1000 0.07 0.08 0.09 0.19 0.33 0.04 0.04 0.06 0.17 0.30

ESTAR-GJR-GARCH

DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−1
)] + ǫt, ǫt = eth

1/2

t ,
Continued on Next Page. . .
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Table 4: Empirical Size Adjusted Power of Wald F Tests(Cont’d.)

ht = 0.005 + 0.7ht−1 + 0.28
(
ǫ2

t−1
− 0.23ǫt−1

)
, et ∼ N (0, 1).

H0: Linearity ESTAR selection
T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB

100 0.12 0.07 0.11 0.10 0.20 0.09 0.04 0.08 0.08 0.17
250 0.18 0.10 0.16 0.23 0.42 0.16 0.08 0.15 0.21 0.40
500 0.25 0.16 0.25 0.34 0.62 0.23 0.14 0.23 0.33 0.61
1000 0.38 0.17 0.29 0.45 0.76 0.36 0.14 0.28 0.44 0.75

ESTAR-Stochastic-Volatility
DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−1
)] + ǫt, ǫt = et exp(ht),

ht = 0.951ht−1 + 0.5et, (ǫt, et) ∼ N (0, diag(0.18, 1)).
H0: Linearity ESTAR selection

T LS HC0 HC2 HC3 WB LS HC0 HC2 HC3 WB
100 0.09 0.09 0.07 0.13 0.19 0.06 0.04 0.05 0.10 0.15
250 0.06 0.06 0.05 0.08 0.20 0.03 0.03 0.03 0.06 0.17
500 0.07 0.06 0.06 0.07 0.16 0.04 0.04 0.04 0.05 0.13
1000 0.05 0.07 0.06 0.10 0.17 0.03 0.03 0.03 0.06 0.14

NOTE: The table reports the empirical size adjusted power of the LS,
HC0, HC2, and HC3 linearity tests (H0: Linearity) and the power of the
WB tests. It also shows the percentage of times an ESTAR model is
selected rather than an LSTAR (ESTAR selection). The nominal signif-
icance level is 5%.

Table 5: Selection Frequencies of the Delay Parameter, d

DGP: yt = 0.3yt−1 − 0.9yt−1[1 − exp(−y2

t−d)] + ut,ut = zth
1/2

t ,
ht = 0.05 + 0.3u2

t−1
+ 0.65ht−1, zt ∼ N (0, 1).

True Delay Parameter: d = 1
T delay LS HC0 HC2 HC3 WB
100 d = 1 0.50 0.21 0.31 0.46 0.72

d = 2 0.30 0.43 0.35 0.30 0.16
d = 3 0.20 0.36 0.34 0.24 0.12

250 d = 1 0.57 0.28 0.39 0.56 0.83
d = 2 0.24 0.39 0.34 0.26 0.09

Continued on Next Page. . .
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Table 5: Selection Frequencies of the Delay Parameter, d(Cont’d.)

T delay LS HC0 HC2 HC3 WB

d = 3 0.19 0.32 0.28 0.18 0.07
500 d = 1 0.57 0.31 0.42 0.59 0.82

d = 2 0.24 0.39 0.28 0.22 0.10
d = 3 0.20 0.30 0.30 0.19 0.08

1000 d = 1 0.60 0.36 0.43 0.57 0.80
d = 2 0.25 0.36 0.31 0.23 0.11
d = 3 0.15 0.28 0.26 0.21 0.08

True Delay Parameter: d = 2
T delay LS HC0 HC2 HC3 WB
100 d = 1 0.16 0.12 0.15 0.18 0.19

d = 2 0.67 0.54 0.52 0.56 0.70
d = 3 0.17 0.33 0.34 0.26 0.10

250 d = 1 0.11 0.17 0.17 0.18 0.14
d = 2 0.75 0.56 0.59 0.65 0.78
d = 3 0.14 0.27 0.24 0.17 0.08

500 d=1 0.15 0.26 0.24 0.23 0.22
d = 2 0.76 0.50 0.57 0.63 0.74
d = 3 0.09 0.24 0.20 0.14 0.04

1000 d = 1 0.27 0.29 0.26 0.25 0.29
d = 2 0.70 0.51 0.56 0.63 0.69
d = 3 0.04 0.20 0.18 0.12 0.02

True Delay Parameter: d = 3
T delay LS HC0 HC2 HC3 WB
100 d = 1 0.18 0.12 0.18 0.19 0.17

d = 2 0.23 0.41 0.33 0.25 0.12
d = 3 0.59 0.47 0.49 0.56 0.71

250 d = 1 0.12 0.17 0.15 0.16 0.12
d = 2 0.15 0.38 0.27 0.20 0.06
d = 3 0.73 0.45 0.58 0.64 0.82

500 d = 1 0.12 0.23 0.20 0.20 0.14
d = 2 0.11 0.31 0.22 0.15 0.06
d = 3 0.77 0.47 0.58 0.65 0.80

Continued on Next Page. . .
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Table 5: Selection Frequencies of the Delay Parameter, d(Cont’d.)

T delay LS HC0 HC2 HC3 WB

1000 d = 1 0.19 0.23 0.19 0.19 0.15
d = 2 0.12 0.32 0.24 0.15 0.07
d = 3 0.69 0.45 0.57 0.67 0.78

NOTE: The table reports selection frequencies of the transition variable
yt−d when the error term exhibits conditional heteroskedasticity. True
delay parameters are in bold.

Table 6: Results for ARCH LM Tests

Series χ2

1
P value χ2

4
P value

DOW JONES 82.41 0.00 231.61 0.00
S&P 500 134.90 0.00 26.00 0.00
USD STERLING 53.45 0.00 136.00 0.00
YEN USD 39.29 0.00 44.42 0.00
FTSE 100 Basis 28.58 0.00 122.26 0.00
RER 0.03 0.86 0.95 0.92

NOTE: The table reports the χ2 statistics and the corresponding P values
for ARCH type heteroskedasticity up to orders 1 and 4.

36



Table 7: Application of Linearity Tests on Empirical
Data

H0: Linearity
Series Test d = 1 d = 2 d = 3 d = 4 Model

DOW JONES LS 0.000 0.000 0.000 0.006 LSTAR
HC0 0.000 0.000 0.000 0.000 ESTAR
HC2 0.000 0.063 0.000 0.478 ESTAR
HC3 0.321 0.988 0.000 0.995 LSTAR
WB 0.317 0.800 0.720 0.990 LINEAR

S&P 500 LS 0.000 0.000 0.000 0.006 ESTAR
HC0 0.000 0.000 0.000 0.000 ESTAR
HC2 0.000 0.053 0.000 0.089 ESTAR
HC3 0.018 0.693 0.332 0.987 ESTAR
WB 0.756 0.539 0.237 0.968 LINEAR

USD LS 0.000 0.000 0.000 0.004 LSTAR
STERLING HC0 0.000 0.000 0.000 0.000 ESTAR

HC2 0.000 0.000 0.000 0.000 LSTAR
HC3 0.000 0.330 0.000 0.451 LSTAR
WB 0.086 0.487 0.013 0.728 LSTAR

YEN USD LS 0.000 0.000 0.000 0.004 LSTAR
HC0 0.000 0.000 0.000 0.000 LSTAR
HC2 0.000 0.000 0.000 0.000 LSTAR
HC3 0.993 0.585 0.006 0.783 LSTAR
WB 0.961 0.628 0.136 0.710 LINEAR

FTSE 100 LS 0.000 0.010 0.071 0.524 LSTAR
BASIS HC0 0.000 0.003 0.000 0.156 LSTAR

HC2 0.000 0.022 0.030 0.314 LSTAR
HC3 0.001 0.127 0.322 0.548 LSTAR
WB 0.000 0.410 0.491 0.656 LSTAR

RER LS 0.132 0.782 0.326 0.904 LINEAR
HC0 0.319 0.870 0.028 0.997 ESTAR
HC2 0.083 0.303 0.749 0.074 LSTAR
HC3 0.228 1.000 0.239 0.904 LINEAR
WB 0.043 0.616 0.462 0.948 ESTAR

Continued on Next Page. . .
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Table 7: Application of Linearity Tests on Empirical Data(Cont’d.)

NOTE: The table reports P values of the LS, HC0, HC2, HC3 and
WB linearity tests (H0: Linearity) and the type of STAR nonlinearity
selected. Figures in bold denote the selected delay parameter. The
nominal significance level is 10%.
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Figure 1: The Logistic and Exponential Transition Functions for γ ∈
{0.01, . . . , 2}, st ∈ {−20, . . . , 20} and c = 0.
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Figure 2: Error of rejection probability in LS, HC0, HC2, HC3 and WB
linearity tests in the presence of conditional heteroskedasticity. The DGP is
an AR(1)-GARCH(1,1) model. The AR coefficient φ = 0.3, and the GARCH
parameters α ∈ {0, 0.1, . . . , 0.8, 0.9} and β ∈ {0, 0.1, . . . , 0.8, 0.9} satisfy α +
β < 1. The unconditional variance of the error process is set to unity (ω =
1 − α − β).
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Figure 3: Time series plots of empirical data. Daily returns on the Dow Jones
and the S&P 500 indices, and the yen-dollar and dollar-sterling nominal
exchange rates cover the period January 2nd, 1991 to the December 31st,
2002. The basis of the FTSE 100 spans the period January 2nd, 1988 to
December 31st, 1998, and the dollar-sterling real exchange rate (RER) the
period 1791 to 2005.
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