
 

 

 

 
Economics Working Paper Series 

 
2019/006 

 
 

Time-Varying General Dynamic Factor Models 
and the Measurement of Financial Connectedness 

 
Matteo Barigozzi, Marc Hallin and Stefano Soccorsi 

 
 
 

The Department of Economics 
Lancaster University Management School 

Lancaster LA1 4YX 
UK 

 
 
 
 
 
 
 
 

© Authors 
All rights reserved. Short sections of text, not to exceed 

two paragraphs, may be quoted without explicit permission, 
provided that full acknowledgement is given. 

 
 

LUMS home page: http://www.lancaster.ac.uk/lums/ 



Time-Varying General Dynamic Factor Models
and the Measurement of Financial Connectedness

Matteo Barigozzi1 Marc Hallin2 Stefano Soccorsi3

4th February 2019

Abstract

Ripple effects in financial markets associated with crashes, systemic risk and contagion
are characterized by non-trivial lead-lag dynamics which is crucial for understanding how
crises spread and, therefore, central in risk management. In the spirit of Diebold and Yil-
maz (2014), we investigate connectedness among financial firms via an analysis of impulse
response functions of adjusted intraday log-ranges to market shocks involving network
theory methods. Motivated by overwhelming evidence that the interdependence struc-
ture of financial markets is varying over time, we are basing that analysis on the so-called
time-varying General Dynamic Factor Model proposed by Eichler et al. (2011), which
extends to the locally stationary context the framework developed by Forni et al. (2000)
under stationarity assumptions. The estimation methods in Eichler et al. (2011), how-
ever, present the major drawback of involving two-sided filters which make it impossible
to recover impulse response functions. We therefore introduce a novel approach extending
to the time-varying context the one-sided method of Forni et al. (2017). The resulting
estimators of time-varying impulse response functions are shown to be consistent, hence
can be used in the analysis of (time-varying) connectedness. Our empirical analysis on
a large and strongly comoving panel of intraday price ranges of US stocks indicates that
large increases in mid to long-run connectedness are associated with the main financial
turmoils.
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1 Introduction

Measuring financial risk is a long-standing challenge of paramount importance for risk man-
agement, portfolio optimization, business cycle analysis and, ultimately, financial regulation.
Fostered by the recent global financial crisis, in the last few years an increasing number of
approaches have been proposed to assess market fragility and its propensity to pervasively
propagate amplified shocks and so overwhelm the financial system as a whole.

Even though, as reviewed by Benoit et al. (2017) systemic risk is a “hard-to-define-but-
you-know-it-when-you-see-it” kind of thing, its quantitative analysis is essentially a meas-
urement of comovements. Acharya et al. (2017), extending previous works of Acharya et al.
(2012) and Brownlees and Engle (2017), consider individual capitalization with respect to that
of the market. Similarly, Adrian and Brunnermeier (2016) measure the conditional effect of
deviations from median value-at-risk on the system value-at-risk.

In this work, we focus on financial connectedness in the spirit of Diebold and Yilmaz
(2014). Based on the relatively straightforward methodology of (generalized) variance de-
compositions in a vector moving average model, their work makes an important contribution
to this field and establishes a link with the network literature. Nevertheless, the Diebold
and Yilmaz (2014) modeling approach is affected by two main limitations. First, based on
parametric estimation, it is not adequate for the large cross-sections typically pervaded by
systemic events. Second, time-series dynamics measurement is based on rolling estimation
which, as argued by Korobilis and Yilmaz (2018), are overwhelmingly affected by the choice
of the window size. We propose a new model which overcomes both shortcomings.

The adjusted intra-day log range is defined by Parkinson (1980) as

Xit := (pit,high − pit,low)2

4 log 2 (1)

where pit,high and pit,low are the maximum and minimum prices, respectively, of the i-th
stock on day t. As stressed by Alizadeh et al. (2002), such a volatility proxy is “highly
efficient and robust to microstructure noise”, whereas in Brownlees and Gallo (2010) it is found
to outperform more sophisticated alternatives. Our novel approach to the measurement of
connectedness based on those log ranges is motivated by two stylized facts, here documented
on a panel composed by 329 constituents of the Standard & Poor 500 observed between
January 4, 2000 and August 31, 2015.

(a) Strong commonality. Figure 1 reports, as a function of time, the time-varying proportion
of variance accounted for by the k = 1, 3 first dynamic factors (in the time-varying factor
model to be described in Section 2). An overwhelming share of variance stems from a
few common factors. As a result, only negligible information is lost by treating all the
dynamics in the panel as factor-driven.

(b) Time-varying interdependencies. Figure 2 reports rolling estimates of the 329 × 329
sample covariance matrix of these log ranges computed at selected dates. The time-
variation in the magnitude of covariances appears clear and shows an increase of in-
terdependencies during crisis periods as 2008. Note that, since time-variation is also
typical in covariances, not just variances, marginal transformations, as a rule, cannot
stabilize joint distributions.
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In order to accommodate for both of these empirical findings, we propose a time-varying
extension of the General Dynamic Factor Model (henceforth GDFM) originally proposed
by Forni et al. (2000). In its original form, the GDFM is dealing with large second-order
stationary panels of time series loading common factors via time-invariant filters — as opposed
to the more popular factor models of the static type (studied, among many others, by Stock
and Watson (2002) and Bai and Ng (2002)), in which common factors are loaded via scalar
loadings rather than filters. As argued in Hallin and Lippi (2013) and Forni et al. (2015, 2017),
consistent estimation of the static factor model requires rather stringent assumptions on the
dynamic properties of the data, while the GDFM follows from a very general representation
result.

The essence of the GDFM is that few unobserved factors drive the main comovements
across the panel where comovements are not only contemporaneous but can also be of dynamic
nature, e.g. a factor may affect series i at time t but series j at time t + 1. Such common
factors, which in our context can be considered as “market wide” factors, generate the dynamic
interdependencies across the observed log ranges which are the focus of this paper. The
dynamic specification of the loadings in the GDFM is particularly useful in this context since
filters naturally induce measures of connectedness at different time scales obtained from the
impulse response functions of the observed data to the factors, and the implied variance
decomposition.

Piecewise stationary factor models, in which parameters change in an abrupt way, also
have been considered in order to cope with (a) and (b), with the desirable feature of spotting
the exact location in time of structural breaks; that change-point approach in high dimension
runs into hard problems, though — see e.g. Barigozzi et al. (2018) and references therein.
Here, we rather adopt a time-varying extension of the GDFM, based on the locally stationary
framework introduced by Dahlhaus (1997) and considered in Eichler et al. (2011), which
assumes a second-order structure varying smoothly over time. Factor models with static
time-varying loadings have been studied by Mikkelsen et al. (2018), Su and Wang (2017),
Bates et al. (2013), Motta et al. (2011) and Del Negro and Otrok (2008).

However, the statistical treatment in Eichler et al. (2011), inspired by Forni et al. (2000), is
based on dynamic principal component regression, which involves two-sided filters and there-
fore does not allow for any impulse response analysis of the dynamic effects of common factors
on observed data. In the stationary context, an alternative estimation method therefore has
been proposed by Forni et al. (2015, 2017), which is entirely based on one-sided filters. The
estimation method we are proposing here is an extension to the time-varying GDFM of the
same — equivalently, an alternative, involving one-sided filters only, to Eichler et al. (2011).
By means of our time-varying GDFM, we therefore obtain time-dependent impulse responses
and measures of connectedness.

Our approach to the study of connectedness at possibly different time scales is in the same
spirit as a number of earlier works where components of financial data with different degrees
of persistence are obtained for systemic risk analysis (Bandi and Tamoni, 2017) and closely
related fields like asset pricing (Balke and Wohar, 2002; Ortu et al., 2013; Dew-Becker and
Giglio, 2016), risk management (Engle, 2010), investment, employment and R&D (Barrero
et al., 2017). Albeit applied to the low-dimensional framework of Diebold and Yilmaz (2014),
a frequency domain decomposition of connectedness matrices similar to the one we perform
here, is obtained by Baruńık and Křehĺık (2018).

Korobilis and Yilmaz (2018) also perform time-varying estimation of high-dimensional
connectedness matrices; however, they do so using Bayesian shrinkage and stick to the vec-
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tor autoregressive approach of Diebold and Yilmaz (2014) in which connectedness is direc-
tional between any two given variables. On the contrary, motivated by the fact that cross-
dependencies in log range data are predominantly driven by common factors, the connected-
ness of each variable, in our approach, lies in its commonality and is undirectional. Indeed,
in line with Acharya et al. (2017) and Adrian and Brunnermeier (2016), the connectedness
measure associated with each variable in our GDFM model is its own contribution to the
total connectedness of the whole system.

Also closely related to our work is Barigozzi and Hallin (2017) who, in a stationary high-
dimensional GDFM consider connectedness generated by idiosyncratic factors. Although
quantitatively unimportant in our data, idiosyncrasy may still be the object of interest and in
the Appendix we show that zero-frequency coherence among idiosyncratic components display
cross-sectional dependence with a block-wise pattern induced by the partition of data into
industrial sectors.

Finally, sharing the opinion of Diebold and Yilmaz (2014), who urge for an increased
integration of network theory techniques into multivariate econometric models for financial
connectedness, we analyse the graph arising from our connectedness measures. So doing, we
contribute to this strand of literature (see Billio et al., 2012; Allen et al., 2012; Acemoglu
et al., 2010, to quote only a few) by proposing a time-varying network analysis.

When applying our approach to the S&P panel of log ranges, our main findings are the
following:

(a) connectedness is much stronger (and relatively stable) at mid to low frequencies;

(b) large increases in long-run connectedness are associated with, and often anticipate, the
main financial downturns;

(c) the largest spike in long-run connectedness associated with the great crisis of 2007–2009
is much amplified in banks, firms in related financial sectors and real estate;

(d) heterogeneity in long-run connectedness across sectors is relatively low in calm times
and very high during financial turmoils.

The rest of the paper is organized as follows. In Section 2, we present the time-varying
General Dynamic Factor Model. Building on Dahlhaus (2009), Eichler et al. (2011), and Forni
et al. (2015, 2017), Section 3 proposes an estimation method, yielding consistent estimates of
the time-varying impulse response functions to common shocks. Section 4 is about the con-
nectedness measures we derive from the model and other techniques borrowed from network
theory. Empirical results are discussed in Section 5. Section 6 concludes and outlines avenues
for future research.

2 A time-varying Generalized Dynamic Factor Model

In this section we first define a time-varying Generalized Dynamic Factor Model (GDFM)
inspired by Dahlhaus (1997, 2009) and Eichler et al. (2011). All random variables considered
below belong to the space of centered real-valued random variables with finite second-order
moments defined over some common probability space. As usual, L stands for the lag operator.

The factor model approach in the analysis of a (zero-mean) double-indexed pro-
cess X := {Xit : i ∈ N0, t ∈ Z} (here, the process of intraday log range values; i is
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a cross-sectional index and t stands for time) is based on a decomposition of Xit into the sum

Xit = χit + ξit, i ∈ N0, t ∈ Z (2)

of two unobserved components: the common component process χ := {χit} and the idio-
syncratic component process ξ := {ξit}. For χ and ξ, we assume the following time-varying
MA representations, which account for non-stationarity and the time-varying nature of their
second-order structure:

χit =
q∑
j=1

∞∑
k=0

c∗ijk(t)uj,t−k, i ∈ N0, t ∈ Z, (3)

ξit =
∞∑
j=1

∞∑
k=0

d∗ijk(t)ηj,t−k, i ∈ N0, t ∈ Z (4)

(see Assumption (A) for identification assumptions). Denoting by {Xnt := (X1t, . . . , Xnt)′},
{χnt := (χ1t, . . . , χnt)′}, and {ξnt := (ξ1t, . . . , ξnt)′} the n-dimensional subprocesses of X, χ,
and ξ, we also have

Xnt = χnt + ξnt, t ∈ Z, n ∈ N0

with

χnt := C∗n(t, L)ut and ξnt := D∗n(t, L)ηt, t ∈ Z, n ∈ N0 (5)

where ut := (u1t, . . . , uqt)′, ηt := (η1t, η2t, . . .)′,

C∗n(t, L) :=


c∗11(t, L) . . . c∗1q(t, L)

...
...

c∗n1(t, L) . . . c∗nq(t, L)

 , D∗n(t, L) :=

 d∗11(t, L) d∗12(t, L) . . .
...

...
d∗n1(t, L) d∗n2(t, L) . . .

 ,

c∗ij(t, L) :=
∞∑
k=0

c∗ijk(t)Lk, 1 ≤ i ≤ n, 1 ≤ j ≤ q,

and
d∗ij(t, L) :=

∞∑
k=0

d∗ijk(t)Lk, 1 ≤ i ≤ n, j ∈ N0.

The existence of time-independent one-sided filters C∗n(t, L) = C∗n(L) is justified in the
stationary case by the representation results in Hallin and Lippi (2013); here we directly
assume (3). The generic element c∗ij(t, L) of C∗n(t, L) represents the time-varying impulse
response function of variable Xit to the jth factor (common shock) uj ; those impulse-response
functions are the main quantities of interest here.

Throughout we assume that the shocks are satisfying the following assumption.

Assumption (A). The common and idiosyncratic shocks are such that

A1. the process of common shocks {ut : t ∈ Z} is Gaussian second-order q-dimensional white
noise: E[ut] = 0, E[utu′t] = Iq, and E[utut−k]′ = 0 for all t, k ∈ Z, and k 6= 0;

A2. the infinite-dimensional process of idiosyncratic shocks η := {ηt : t ∈ Z} is Gaussian
second-order white noise: for any n-dimensional subprocess {ηnt = (η1t, . . . , ηnt)′ : t ∈ Z},
E[ηnt] = 0, E[ηntη′nt] = In, and E[ηntη′n,t−k] = 0 for all t, k ∈ Z, and k 6= 0;
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A3. the common and idiosyncratic shocks are mutually orthogonal at all leads and lags:
E[ηi,t−kujt] = 0 for all i ∈ N0, j = 1, . . . , q, and t, k ∈ Z.

Gaussianity here is assumed for simplicity, as the adjusted intra-day log range observa-
tions we are considering in this paper are well approximated by Gaussian variables — see
e.g. Alizadeh et al. (2002). Gaussian assumptions clearly could be relaxed — at the expense,
however, of moment assumptions (as in Dahlhaus, 2009 or Eichler et al., 2011).

In practice, observations of X are available over a finite number T of points. Due to non-
stationarity, letting T tend to infinity, that is, extending the process into the future, will not
provide further insight into the behavior of the process at the beginning of the time interval.
Hence, in this context, we need a different asymptotic scheme in order to assess the quality
of inference procedures — typically, in order to study the consistency, as n and T tend to
infinity, of estimators of the time-varying impulse response functions C∗n(t, L) over the time
interval [1, T ].

Following Dahlhaus (2009), we consider the locally stationary asymptotic scheme, an
approach that has been initiated in Dahlhaus (1997). More precisely, for any τ ∈ [0, 1],
let Xτ = {Xit;τ : i ∈ N0, t ∈ Z} denote the fictitious (i.e., non-observable) stationary process
described by the GDFM decomposition

Xit;τ := χit;τ + ξit;τ , i ∈ N0, t ∈ Z, (6)

where

χit;τ =
q∑
j=1

∞∑
k=0

cijk(τ)uj,t−k, i ∈ N0, t ∈ Z, (7)

ξit;τ =
∞∑
j=1

∞∑
k=0

dijk(τ)ηj,t−k, i ∈ N0, t ∈ Z. (8)

where the driving shocks ujt and ηjt are the same as in (3) and (4) (hence satisfy Assump-
tion (A)): write χτ and ξτ for {χit:τ : i ∈ N0, t ∈ Z} and {ξit:τ : i ∈ N0, t ∈ Z}, respectively.
Letting

Xnt;τ := (X1t;τ , . . . , Xnt;τ )′, χnt;τ := (χ1t;τ , . . . , χnt;τ )′, and ξnt;τ := (ξ1t;τ , . . . , ξnt;τ )′,

(6)-(8) also can be written, with obvious notation Cn(τ, L) and Dn(τ, L), as

Xnt;τ = χnt;τ + ξnt;τ , τ ∈ [0, 1], t ∈ Z, n ∈ N0 (9)

where

χnt;τ := Cn(τ, L)ut and ξnt;τ := Dn(τ, L)ηnt, τ ∈ [0, 1], t ∈ Z, n ∈ N0. (10)

As τ ranges over [0, 1], the Xτ ’s thus constitute a collection of stationary processes. Denote
by XT := {Xit : i ∈ N0, t = 1, . . . , T} the finite-T subprocess of the nonstationary X. The
idea consists in approximating the (nonstationary) componentXit of XT with the valueXit;t/T
of the stationary process Xτ = {Xis;τ : i ∈ N0, s ∈ Z}, τ = t/T (the so-called rescaled time)
at time s = t:

Xit ≈ Xit;t/T = χit;t/T + ξit;t/T , i ∈ N0, t = 1, . . . , T, (11)
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where χit;t/T , defined in (7), depends on the coefficients cijk(t/T ) and ξit;t/T , defined in (8),
similarly depends on the coefficients dijk(t/T ).

If the approximation (11) is to make sense, of course, the coefficients in (7) and (8) need
to satisfy some regularity assumptions, and to somehow approximate those in (3) and (4).
The following regularity conditions are extending to the GDFM context Assumption 2.1 of
Dahlhaus (2009) (see also Assumption 5 in Eichler et al., 2011, and note that Assumption (B4)
is actually borrowed from Definition 2.1 in Dahlhaus, 1997).

Assumption (B). There exist a κ > 0 and constants C1, ..., C4 (independent of i, j, and T )
such that, letting

`(k) :=
{

1 if |k| ≤ 1
|k| log1+κ |k| if |k| > 1 ,

B1. supt |c∗ijk(t)| ≤ C1/`(k) for all i ∈ N0, j = 1, . . . , q, and k ∈ N;

B2. supτ |cijk(τ)| ≤ C2/`(k) for all i ∈ N0, j = 1, . . . , q, and k ∈ N;

B3. supm∈N0 sup0=s0≤...≤sm=1
∑m
h=1 |cijk(sh) − cijk(sh−1)| ≤ C3/`(k) (that is, τ 7→ cijk(τ)

has bounded variation) for all i ∈ N0, j = 1, . . . , q, and k ∈ N;

B4. the coefficients c∗ijk(t) in (3) and cijk(τ) in (7) are related by

max
t=1,...,T

sup
k∈N
|c∗ijk(t)− cijk(t/T )| ≤ C4/T

for all i ∈ N0, j = 1, . . . , q, and T ∈ N0;

B5. analogs of conditions B1-B4 hold for the idiosyncratic coefficients d∗ijk(t) and dijk(τ)
(with j ∈ N0 instead of j = 1, . . . , q).

Although the filters in (7) and (8) are not required to coincide with those in (3) and (4), the
approximation in (11) is justified by conditions B4 and B5. As we show in Section 3, this plays
an essential role in the problem of consistent (as n and T tend to infinity) estimation of the
impulse response coefficients c∗ijk(t). In accordance with Dahlhaus’ terminology, a sequence
of processes XT satisfying Assumptions (A) and (B) will be called locally stationary.

Unlike the nonstationary X, χ, and ξ, the stationary processes Xτ , χτ , and ξτ , for
any τ ∈ [0, 1], under Assumptions (A) and (B), admit well-defined spectral densities. For
any n ∈ N0, denote by

ΣX
n (τ ; θ) := 1

2π

∞∑
k=−∞

e−ιkθ E[Xnt;τX′n,t−k;τ ], θ ∈ (0, 2π], (12)

the n × n spectral density matrix of Xnt;τ , and similarly define Σχ
n(τ ; θ) and Σξ

n(τ ; θ). For
given τ and θ, each of the matrix sequences ΣX

n (τ ; θ), Σχ
n(τ ; θ), and Σξ

n(τ ; θ) is nested as n
increases. Denote by λXj;n(τ ; θ), λχj;n(τ ; θ), and λξj;n(τ ; θ) their jth eigenvalues (in decreasing
order of magnitude). We make the following assumptions (see also Assumptions 2 and 3 in
Eichler et al., 2011).

Assumption (C). C1. For any n ∈ N0 and θ ∈ (0, 2π], the mappings τ 7→ Σχ
n(τ ; θ) and

τ 7→ Σξ
n(τ ; θ) are Lipschitz continuous;
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C2. the spectral density matrices Σχ
n(τ ; θ) and Σξ

n(τ ; θ) are twice continuously differentiable
for all τ ∈ [0, 1] and all θ ∈ (0, 2π];

C3. there exist continuous functions θ 7→ αχj (τ ; θ) and θ 7→ βχj (τ ; θ) , j = 1, . . . , q, and an
integer Nχ such that, for all n > Nχ, all τ ∈ [0, 1], and Lebesgue-a.e.1 over θ ∈ (0, 2π],

βχ1 (τ ; θ) ≥
λχ1;n(τ ; θ)

n
≥ αχ1 (τ ; θ) > βχ2 (τ ; θ) ≥

λχ2;n(τ ; θ)
n

≥ . . .

. . . ≥ αχq−1(τ ; θ) > βχq (τ ; θ) ≥
λχq;n(τ ; θ)

n
≥ αχq (τ ; θ) > 0;

C4. there exists a constant Bξ such that λξ1;n(τ ; θ) ≤ Bξ for all n ∈ N0, all τ ∈ [0, 1] and
all θ ∈ (0, 2π].2

Assumption (C) is a generalization to the time-varying case of the classical assumption of
an eigen-gap in the spectral density matrix which is increasing with n and therefore allows
for identification of the common and idiosyncratic components as n→∞ (Forni et al., 2000).
Note that C3 rules out the possibility of a time-varying number of factors: irrespective of τ ,
all spectral density matrices Σχ

n(τ ; θ) have (for n ≥ q+1) q distinct and exploding (as n→∞)
eigenvalues.

Assuming that the nT -dimensional process XnT := {Xit : i = 1, . . . , n, t = 1, . . . , T}
(an n × T panel) is observed, associate with each t = 1, . . . , T the spectral density matri-
ces ΣX

n (t/T ; θ), Σχ
n(t/T ; θ), and Σξ

n(t/T ; θ): those spectral matrices, which depend on res-
caled time, will be used as local substitutes for XnT ’s nonexisting (or meaningless) spectrum.
Obviously,

ΣX
n (t/T ; θ) = Σχ

n(t/T ; θ) + Σξ
n(t/T ; θ), t = 1, . . . , T, θ ∈ (0, 2π].

We conclude this section with assuming the existence of a singular autoregressive repres-
entation for the common components processes χτ (for a stationary version, see Assumption 5
in Forni et al., 2017).

Assumption (D). Denote by χ(q+1)
τ := {χ(q+1)

t;τ := (χi1t;τ , . . . , χiq+1t;τ )′ : t ∈ Z} an arbit-
rary (q + 1)-dimensional subprocess of χτ (as defined in (7)). For all τ ∈ [0, 1] and k ∈ N0,

D1. there exists a unique autoregressive (q+ 1)× (q+ 1) filter A(q+1)(τ, L) and a (q+ 1)× q
matrix H(q+1)(τ) of rank q such that

A(q+1)(τ, L)χ(q+1)
t;τ = H(q+1)(τ)ut, t ∈ Z;

D2. the order of A(q+1)(τ, L) is bounded, uniformly in τ ∈ [0, 1] and (i1, . . . , iq+1), by
some S ≥ 0;

D3. det A(q+1)(τ, z) 6= 0, for all z ∈ C such that |z| ≤ 1;
1that is, except for a subset of θ values included in a set with Lebesgue measure zero.
2Assumption 4 in Forni et al. (2017) provides (mutatis mutandis) sufficient conditions for this, involving

the coefficients dijk(τ).
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D4. let Γχ(q+1)(τ, `) = E[χ(q+1)
t;τ χ

(q+1)′
t−k;τ ] denote the (q + 1) × (q + 1) lag ` autocovariance

matrix of χ(q+1)
τ and, for S > 0, define the S(q + 1)× S(q + 1) matrix

G(q+1)(τ) :=


Γχ(q+1)(τ, 0) Γχ(q+1)(τ, 1) . . . Γχ(q+1)(τ, S − 1)
Γχ(q+1)(τ,−1) Γχ(q+1)(τ, 0) . . . Γχ(q+1)(τ, S − 2)
...

... . . . ...
Γχ(q+1)(τ,−S + 1) Γχ(q+1)(τ,−S + 2) . . . Γχ(q+1)(τ, 0)

 :

there exists a constant d > 0 such that det G(q+1)(τ) > d, for all (i1, . . . , iq+1) and
all τ ∈ [0, 1]. For S = 0, let G(q+1)(τ) := Iq+1 for all τ ∈ [0, 1].

Assumption (D) is crucial for allowing us to estimate the model by means of one-sided
filters. Actually, it has been shown by Anderson and Deistler (2008a,b) that, for rational
processes3 it holds generically4. Generically is not enough here, though, and this is why we
need to make it an assumption which, however, for the same reason, turns out to be a very
mild one (see also Section 4 in Forni et al., 2015).

Now consider the case in which n = m(q + 1) for some integer m.5 The n-dimensional
common component χnt;τ under Assumption (D) admits the autoregressive representation

An(τ, L)χnt;τ = Rn(τ)ut, τ ∈ [0, 1], t ∈ Z (13)

where, for all τ ∈ [0, 1], An(τ, L) is block-diagonal with m diagonal blocks Ak(τ, L),
k = 1, . . . ,m, each of dimension (q + 1)× (q + 1) and satisfying Assumption (D), and Rn(τ)
(stacking m matrices of the type H(q+1)(τ)) is of dimension n × q with full column rank q.
Moreover, letting Znt;τ := An(τ, L)Xnt;τ we have

Znt;τ = Rn(τ)ut + An(τ, L)ξnt;τ =: ψnt;τ + ζnt;τ , τ ∈ [0, 1], t ∈ Z. (14)

This defines for Znt;τ a locally stationary static factor model with the same q common
shocks {ut} as those appearing in the definition (3) of the nonstationary GDFM for X.
Let ΓZn (τ), Γψn(τ), and Γζn(τ) stand for the n×n covariance matrices of Znt;τ , ψnt;τ , and ζnt;τ ,
respectively; because of Assumption (A3), we have

ΓZn (τ) = Γψn(τ) + Γζn(τ).

Let µψj;n(τ) and µζj;n(τ) denote the jth eigenvalues (in decreasing order) of the covariance
matrices Γψn(τ) and Γζn(τ), respectively. Our last assumption allows us to identify the decom-
position (14) as n→∞ (see Assumption 6 in Forni et al., 2017).

Assumption (E). E1. There exist constants αψj (τ) and βψj (τ) , j = 1, . . . , q, and an integer
Nψ such that, for all n > Nψ, and all τ ∈ [0, 1],

βψ1 (τ) ≥
µψ1;n(τ)
n

≥ αψ1 (τ) > βψ2 (τ) ≥
µψ2;n(τ)
n

≥ . . .

. . . ≥ αψq−1(τ) > βψq (τ) ≥
µψq;n(τ)
n

≥ αψq (τ) > 0;
3A rational process is a process admitting a VARMA representation of finite (but unspecified) orders; such

processes are dense in the family of stationary processes.
4that is, except for a subset of the parameter space of their VARMA representation contained in a set of

Lebesgue measure zero.
5This is convenient and does not imply any loss of generality for our asymptotic analysis, see the end

Section 3.1 for further details when this is not the case.
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E2. there exists a constant Bζ such that µζ1;n(τ) ≤ Bζ for all n ∈ N0 and all τ ∈ [0, 1].

3 Estimation and consistency

In this section, we show how to adapt the Forni et al. (2015, 2017) one-sided estimation method
to the time-varying setting described by Assumptions (A)-(E). The substantial advantage over
the Eichler et al. (2011) time-varying extension of the simpler dynamic principal component
analysis of Forni et al. (2000) is that it delivers estimators of the filters C∗n(t, L) (1 ≤ t ≤ T )
which are one-sided and therefore can be directly used for time-varying impulse response
analysis.

Hereafter, all estimated quantities are denoted with “hats”, e.g. ĉij;n,T (t/T ) for the estim-
ator, based on the observation of an n× T realization XnT of X, of the kth coefficient in the
(i, j)th entry of Cn(t/T, L), etc. All estimated quantities depend on both n and T .

3.1 Estimation

Our estimation procedure is based on three main steps; throughout this section, n and T are
fixed.

(i) Dynamic Principal Component Analysis. First, let J be a kernel with bandwidth bT and
K a kernel with bandwidth hT , then, following Neumann and von Sachs (1997), we
estimate the local spectral density matrices ΣX

n (τ ; θ) by means of the smoothed pre-
periodograms

Σ̂X
n,T (τ ; θj) := 2π

T 2bThT

T∑
s=1

T∑
`=1

J
(
τT − s
TbT

)
K
(
θj − 2π`

T

hT

)
Sn,T (τ ; θj), τ ∈ [0, 1], (15)

which is the smoothed version of the pre-periodograms

Sn,T (τ ; θj) := 1
2π

∑
k:1≤bτT+ 1±k

2 c≤T

e−ιkθjXn,bτT+ 1+k
2 cX

′
n,bτT+ 1−k

2 c
, τ ∈ [0, 1]. (16)

and where (15) and (16) are computed on the set {θj = 2πhT j, j = 1, . . . , b1/hT c} of
Fourier frequencies. Moreover, although τ ranges over [0, 1], both quantities in (15)
and (16) for given θj only take a finite number T of distinct values, corresponding to a
discrete set {1/T, . . . , (T − 1)/T, 1} of τ values. We refer to Section 5.1 for the specific
choice of kernels and bandwidths. Here we just notice that the time bandwidth bT is
defined in rescaled time such that bbTT c corresponds to a given number of observations
in the interval [1, T ] used to compute (15) at a given τ , while the frequency band-
width hT is defined over (0, 2π] such that bhTT/(2π)c is the number of frequencies used
to compute (15) at a given θ. The estimator (15) as usual can be extended to arbitrary
frequencies θ ∈ (0, 2π] as6

Σ̂X
n,T (τ ; θ) := Σ̂X

n,T (τ ; θj) for θj−1 < θ ≤ θj ,
6However, note that, while in principle we could compute (15) over a finer grid, e.g. θj = 2πj/T

with j = 1, . . . , T , in practice, due to the smoothing, the maximum achievable resolution is 1/(2πhT ) < T/2π,
because of Assumption (F) below.
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with θ0 := 0.
For any given T , n, τ , and θ, denote by λ̂Xj;n,T (τ ; θ) the jth eigenvalue (in decreasing
order of magnitude) of Σ̂X

n,T (τ ; θ) and by P̂X
j;n,T (τ ; θ), the corresponding n-dimensional

normalized eigenvector. Then, for a given number q of factors,

Σ̂χ
n,T (τ ; θ) :=

q∑
j=1

λ̂Xj;n,T (τ ; θ)P̂X
j;n,T (τ ; θ)P̂X†

j;n,T (τ ; θ), τ ∈ [0, 1]

is an estimator of the spectral density Σχ
n(τ ; θ) of the common component at frequency θ.

Lastly, by inverse Fourier transform, we compute, for τ = t/T , estimators of the local
autocovariance matrices of the common component:

Γ̂χn,T (t/T, k) := 2πbhT c
b1/hT c∑
j=1

eιkθj Σ̂χ
n,T (t/T ; θj), t = 1, . . . , T, k ∈ Z. (17)

(ii) VAR filtering. Assuming again, for simplicity, that n = m(q + 1) for some integer m,
write χknt;τ := (χ(k−1)(q−1)+1,t;τ , . . . , χk(q+1),t;τ )′, k = 1, . . . ,m, for the m (q + 1)-
dimensional subvectors of χnt;τ , and consider the m autoregressive models each of
dimension (q + 1) (see Assumption (D))

Ak
n(t/T, L)χknt;t/T = Hk

n(t/T )ut, t = 1, . . . , T, k = 1, . . . ,m. (18)

Based on the estimated autocovariances (17), compute, using AIC for the VAR or-
ders, the Yule-Walker estimates Âk

n,T (t/T, L) of the autoregressive filters Ak
n(t/T, L).

Construct the n × n block-diagonal filter Ân,T (t/T, L) with (see (13)) the m diagonal
blocks Â1

n,T (t/T, L), . . . , Âm
n,T (t/T, L) and the filtered process

Ẑnt;t/T := Ân,T (t/T, L)Xnt, t = 1, . . . , T (19)

which will be used as an estimation of Znt;t/T , where Znt;t/T satisfies (for τ = t/T ) (14).

(iii) Principal Component Analysis. Following Rodŕıguez-Poo and Linton (2001), we consider
the smoothed covariance matrix

Γ̂Ẑn,T (t/T ) := 1
T

T∑
s=1

J
(
t− s
TbT

)
Ẑns;t/T Ẑ′ns;t/T , t = 1, . . . , T, (20)

of Ẑnt;t/T , where the kernel J is the same as the one used in (15) for computing the local
spectral density. Denote by µ̂Ẑj;n,T (t/T ) the jth eigenvalue of Γ̂Ẑn (t/T ) in decreasing
order of magnitude, with normalized n-dimensional eigenvector P̂Ẑ

j;n,T (t/T ); define

R̂j;n,T (t/T ) := P̂Ẑ
j;n,T (t/T )

√
µ̂Ẑj;n,T (t/T ), j = 1, . . . , q,

and let R̂n,T (t/T ) := (R̂1;n,T (t/T ) . . . R̂q;n,T (t/T )). Our estimators of the impulse re-
sponse functions C∗n(t, L) are

Ĉ∗n,T (t, L) := [Ân,T (t/T, L)]−1R̂n,T (t/T ). (21)

with (i, j) entry ĉ∗ij;n,T (t, L) =:
∑∞
k=0 ĉ∗ijk;n,T (t)Lk; the latter, up to a q-tuple of signs

(see Proposition 1), is a consistent estimator of c∗ij(t, L) =:
∑∞
k=0 c∗ijk(t)Lk as n, T →∞.
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The estimation procedure just described calls for some comments. First, step (i) is directly
taken from Eichler et al. (2011), who propose to estimate the common component by means
of time-varying dynamic principal components. Steps (ii) and (iii), and the estimator (21) of
the time-varying impulse response function to common shocks represent the novelty of this
paper, being the generalization to the time-varying case of the approach proposed by Forni
et al. (2017). In particular, step (iii) shows how an adequate VAR filtering brings the problem
back to a time-varying static factor model in the style of Rodŕıguez-Poo and Linton (2001)
and Motta et al. (2011).

Second, the matrices Rn(τ) and the noise ut in (13) are identified up to an arbitrary
orthogonal transformation Pt only, as Rn(τ)ut = Rn(τ)PtP′tut. It is shown in the Appendix
that our choice of R̂n,T (t/T ) identifies the impulse responses up to a sign. This, however,
is not surprising, as the shocks have been assumed to be Gaussian, hence suffer the same
indetermination. That sign issue can be solved by imposing identification constraints: see,
for instance, Section 4.1 in Forni et al. (2009). Since, however, our study of connectedness
does not require specifying those signs, we are skipping details.

Third, the cross-sectional ordering of the panel has an impact on the selection of the m
subvectors χknt;τ in step (ii) and the possible dropping of n − bn/(q + 1)c(q + 1) series at
the end of the panel when n is not an exact multiple of (q + 1). The n! cross-sectional
permutations of the panel, thus, would lead to n! estimators, all sharing the same consistency
properties stated in Proposition 1. A Rao-Blackwell argument (see Section 3.5 of Forni et al.,
2017 for details) suggests aggregating these estimators into a unique one by simple averaging
(after obvious reordering) of the resulting impulse response functions. Although averaging
over all n! permutations is clearly unfeasible, as stressed by Forni et al. (2017, Section 4.2)
and Forni et al. (2018, Appendix D) in a stationary setting, a few of them are enough, in
practice, to deliver stable averages (which therefore are matching the infeasible average over
all n! permutations). Such averaging clearly has no impact on consistency.

Fourth, the number q of common shocks throughout has been considered as known, and we
assumed it to be constant through time. That number has to be estimated from the observa-
tions, though. We suggest using the criterion proposed by Hallin and Lǐska (2007). However,
instead of implementing it on the basis of a classical periodogram (invalid in the present
context), we suggest running the method on the the smoothed pre-periodogram Σ̂X

n,T (1/2; θ)
associated with the middle part of the observation period (τ = 1/2). The validity of the
assumption of a constant number q of common shocks also can be tested heuristically by
iterating the same analysis for a few values of τ , then comparing the results7.

3.2 Consistency

We now turn to the consistency, as n and T tend to infinity, of the estimated time-varying
impulse response functions (21). This, however, requires assumptions on the bandwidths and
the kernels used in (15).

Assumption (F). The kernels J and K

F1. have compact support [−1/2, 1/2];

F2. are such that
∫ 1/2
−1/2 xJ(x)dx =

∫ 1/2
−1/2 xK(x)dx = 0 and

∫ 1/2
−1/2 J(x)dx =

∫ 1/2
−1/2 K(x)dx = 1.

7This is how we determine q in Section 5.
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The bandwidths hT and bT are such that, as T →∞,

F3. hT → 0, bT → 0, ThT bT →∞, ThT bT / log2 T →∞, and
√
ThT bT (h2

T + b2T )→ 0.

Let σ̂Xij;n,T (τ ; θ) and σXij (τ ; θ) denote the (i, j) entries of Σ̂X
n,T (τ ; θ) and ΣX

n (τ, θ), respect-
ively (due to nestedness, σXij (τ ; θ) does not depend on n). It follows from Dahlhaus (2009,
Example 4.2) (see also Theorem 7 in Eichler et al., 2011) that, under Assumptions (A), (B),
and (F), as n and T tend to infinity,

sup
τ∈
[
bT
2 ,1− bT2

] sup
θ∈(0,2π]

max
i,j=1,...,n

E
[∣∣∣σ̂Xij;n,T (τ ; θ)− σXij (τ ; θ)

∣∣∣2] = O

( 1
ThT bT

)
. (22)

Due to the two-sided kernel used for smoothing in time, the above result only holds for the
central part of the observation period, not for the beginning nor the end of it. In particular,
letting for example t = bτT c8, (22) only holds for t = bTbT2 c, b

TbT
2 c+1, . . . , T − bTbT2 c, that is,

for the central T −bTbT c+ 1 or T −bTbT c+ 2 values of t, according as bTbT c is even or odd.
A consequence is that, in Proposition 1 below (and assuming that Assumptions (C), (D),
and (E) also hold), we only do recover the impulse response functions for the same central
values of t.

Finally, consistency in the following proposition is considered in terms of the estimation
of the coefficients c∗ijk(t). This, however, brings back the identification issue mentioned is
Section 3.1. While that issue can be fixed by means of identification constraints, we do not
need to resolve it here and, for the sake of simplicity, we keep the sign indetermination in
the following consistency statement (a similar choice is made, for instance, in Propositions 10
and 11 of Forni et al., 2017).

Proposition 1. Let Assumptions (A)-(F). For any given k ≥ 0, there exist sequences {sj(t)}qj=1,
with sj(t) = ±1, such that, as n, T → ∞ with n = O(Tω) for some ω > 0,

max
t=
⌊
TbT

2

⌋
,...,T−

⌊
TbT

2

⌋ max
i=1,...,n
j=1,...,q

∣∣∣ĉ∗ijk;n,T (t)− sj(t)c∗ijk(t)
∣∣∣ = OP

max

√ log T
ThT bT

,

√
log T
n

 .
This consistency result is proved in the Appendix and it justifies, for large n and T , the

analysis of connectedness to be conducted in the next section on the basis of Ĉ∗n,T (t, z).

4 An analysis of (time-varying) connectedness

Turning to financial connectedness, our connectedness measurements, in analogy with Diebold
and Yilmaz (2014), are based on the (empirical) n× n connectedness matrices

Qn,T (t, z) := Ĉ∗n,T (t, z)Ĉ∗′n,T (t, z), z ∈ C (23)

with Ĉ∗n,T (t, z) defined in (21). Note that since Ĉ∗n,T (t, z) represents the dynamic effect of the
common “market-wide” shocks, considering (23) at different horizons yields connectedness
measurements at different horizons: namely,

8This is the way we compute our estimators in Section 4, however notice that the choice t = dτT e is equally
valid.

13



(a) a long-run connectedness matrix at time t measured as Qn,T (t, 1) which is generated
by the long-run effects of the market shocks;

(b) an instantaneous connectedness matrix at time t measured as Qn,T (t, 0) which is gen-
erated by the instantaneous effects the market shocks;

(c) spectral connectedness matrices within specific frequency bands Θ ⊂ (0, 2π] defined as the
connectedness in the components with period 2π

θ (θ ∈ Θ) of the spectral representation9

of Xnt:
Qn,T ;Θ (t) := 1

|Θ|

∫
Θ

Qn,T

(
t, e−ikθ

)
dθ, (24)

where |Θ| stands for the size of the frequency band Θ.
Note that, due to its quadratic nature, Qn,T (t, z) is not impacted by the sign issue in the
definition of Ĉ∗n,T (t, z). Throughout this section, n and T are fixed, and we simplify the
notation by dropping the subscripts n, T , thus writing Ĉ∗k(t), Q(t, z), etc.

The evolution in time of the norms of connectedness matrices provides an insight into the
evolution of the total amount of connectedness generated, across the observed panel, by the
common factors or shocks. It is also possible to obtain decompositions of that total amount
into a sum of mutually orthogonal contributions attributable to each of the q common factors.
Denoting by Ĉ∗k(t) the kth matrix coefficient of the polynomial Ĉ∗(t, z) and by Ĉ∗• jk(t) the jth
column of Ĉ∗k(t), we have Ĉ∗• j (t, z) =

∑∞
k=0 Ĉ∗• jk(t)zk, a sum which in practice we truncate

at kmax = 20:

Ĉ∗• j (t, z) =
kmax∑
k=0

Ĉ∗• jk(t)zk

thus is the component of the filter Ĉ∗n (t, z) corresponding to the impulse responses to the jth
factor at time t, while

Q • j;n (t, z) := Ĉ∗• j;n (t, z) Ĉ∗′• j;n (t, z) (25)
represents the contribution (at time t) of factor j to total connectedness; individual factor
contributions to long-run, instantaneous, and spectral connectedness at time t are obtained
similarly.

Cross-sectional decompositions also are possible: the connectedness of a specific cross-
sectional item i attributable to factor j, and its total connectedness at time t can be meas-
ured as

Qij (t, z) := {ĉ ∗ij (t, z)}2 and Qi • (t, z) :=
q∑
j=1

Qij (t, z) , (26)

respectively; definitions of long-run, instantaneous, and spectral connectedness of series i, due
to factor j and total, follow in an obvious way. It will be convenient also to introduce i’s
mean connectedness10 at time t Qi (t, z) := 1

qQi • (t, z) .
Finally, it is often useful to evaluate connectedness within a group of variables. Let S(k),

with cardinality nk, denote the set of indexes of the series belonging to some sector k. We
can measure the corresponding sector-specific mean connectedness at time t as

Q[S(k), • ] (t, z) := 1
nk

∑
i∈S(k)

Qi (t, z) , (27)

9See Theorem 11.8.2 in Brockwell and Davis (1991).
10Mean connectedness actually is what Diebold and Yilmaz (2014) call total connectedness.
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from which we can compute the nk × q matrices of sector-specific long-run, instantaneous,
and spectral connectedness. With obvious notation, Q[S(k),j] (t, z) is the nk-dimensional com-
ponent of Q[S(k), • ] (t, z) related to the jth factor at time t.

4.1 Network interpretation of connectedness measures

As illustrated by Diebold and Yilmaz (2014), covariances are closely related to network ana-
lysis. We share their view that the “blend of multivariate time series and network literature
has much to contribute to the successful measurement of financial economic risk”; in this sub-
section we proceed in that direction, establishing a link between our approach and network
analysis.

A network (or graph) is a set of n nodes connected by edges. In an unweighted graph, the
so-called adjacency matrix is an n×n matrix the entry (i, j) of which is one or zero according
as nodes i and j are connected or not; in a weighted graph, that entry characterizes the
strength of the connection between the two nodes. Diebold and Yilmaz (2014) point out that
connectedness matrices are adjacency matrix of the weighted type11 Two notable differences
with Diebold and Yilmaz (2014), however, are that (i) our connectedness matrices are sym-
metric, hence the adjacency matrices of undirected graphs, and (ii) they are unconstrained,
unlike those in Diebold and Yilmaz (2014), the rows of which sum up to one.

In the rest of this section, we apply to our long-run connectedness matrix some well-known
techniques for similarity graphs.

4.1.1 Centrality

A very natural question in network analysis is to ask how “central”, that is, how important,
is each node in the whole system. This is clearly related to the total connectedness of a firm
and resembles the widespread definition of systemically important financial institutions —
namely, the firms which are considered to contribute more heavily to the systemic risk (see
e.g. Acemoglu et al., 2015, and references therein).

A popular measure of centrality is the so-called eigenvector centrality: the centrality of a
node i is defined as the corresponding element in the eigenvector associated with the largest
eigenvalue of the adjacency matrix of a graph. As argued by Newman (2008), eigenvector
centrality, in the analysis of weighted graphs, is a more appropriate concept of node centrality
than the node’s degree (i.e. the number of edges connected to a given node).

In the case of long-run connectedness, we will consider the adjacency matrix Q| • | (t, 1) the
entries of which are the absolute values of those in Q (t, 1). In doing so, the link between two
nodes i and j is unaffected by the sign of the covariance between Xit and Xjt. Furthermore,
non-negative elements is a requirement for the application of the Perron-Frobenius theorem,
granting the uniqueness of eigenvector centrality.

4.1.2 The graph Laplacian and its eigenvalues

Beyond centrality, other relevant concepts and techniques can be borrowed from network
theory. Let us focus on the number of connected cross-sectional units, the strength of their
connections, and how these evolve over time.

11Our connectedness matrices, as those in Diebold and Yilmaz (2014), have non-zero elements along the
main diagonal. As pointed out by von Luxburg (2007), this is not a problem, since the Laplacian of a weighted
graph does not depend on the strength of self edges.
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In order to do so, we need the Laplacian matrix defined, at time t, as L (t) = D (t)−A (t),
where A (t) is an adjacency matrix and D (t) the corresponding degree matrix. Inferring the
number of connected units and the strength of their links requires focusing on the quantitat-
ively most important connections. Following Diebold and Yilmaz (2014), consider percentiles
in the (empirical) distribution of Q| • | (t, 1)’s entries, and replace those which are below a
certain level with zeros: A (t) is the resulting matrix, the only non-zero elements of which are
those related to sufficiently large entries of Q| • | (t, 1). So doing, we are applying a technique
for obtaining similarity graphs from distance measures known as ε-neighborhood for which the
the adjacency matrix non-zero entries correspond to nodes whose mutual distance is above a
certain threshold (von Luxburg, 2007).

Two important properties of the Laplacian matrix L (t) is that it is positive semi-definite,
with eigenvalues containing all the information we are interested in; in particular,

(a) its smallest eigenvalue is equal to zero and its multiplicity represents the number of
connected units in the graph (von Luxburg, 2007, Proposition 2);

(b) its smallest non-zero eigenvalue, often referred to as the Fiedler number (or algebraic
connectivity) after the work of Fiedler (1973)12 is a measure of the overall strength of
connectedness in the graph.

5 Empirical results

5.1 Data and model specification

We applied the methodology described in the previous sections on a large datasets of daily
stocks which have been constituents of the Standard & Poor 500 from December 31, 1999 to
August 31, 2015; so doing we retain the daily maximum and minimum prices of n = 329 stocks
observed over a sample of T = 3939 daily observations. Once their price ranges are calculated
according to the definition of Parkinson (1980) in equation (1), we fit to the resulting panel
the time-varying GDFM described in Sections 2 and 3 and apply the connectedness measures
in Section 4.

The first step to the estimation of the GDFM is that of the spectral density matrix which,
employing the estimator proposed by Neumann and von Sachs (1997) in equation (15), re-
quires the choice of the smoothing kernels K and J in frequency and time domain, respectively,
and their bandwidths hT and bT . For both kernels we used a triangular window, while the
selected bandwidths are such that: bhTT/(2π)c = 5, which corresponds to five frequencies
and bbTT c = 10 corresponding to ten days, i.e. two weeks, of trading. The time-kernel be-
ing two-sided, our results cannot be computed in real-time, but with a delay determined by
the corresponding bandwidth: so, for example, our choice of bT implies that in a predictive
exercise our estimates would be available two weeks late.

Once the spectrum is estimated at each point in time, we need to determine the number
of factors. The number q is estimated by applying the criterion of Hallin and Lǐska (2007) to
the local estimate of the spectral density matrix defined in (15). Estimation at various points
in time (various values of τ) supports evidence that q = 3 throughout the observation period,

12Fiedler numbers are also used in the construction of bi-partitioned graphs and related spectral clustering
procedures: see Pothen et al. (1990).
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hence is compatible with the assumption made of a “constant q”.13

Finally, as spelled out in Section 3, in order to avoid the finite-sample dependence of
the results on the cross-sectional ordering, we average results over 100 permutations of the
observed panel. All the figures and tables shown below are related to the same Standard &
Poor 500 dataset (n = 329, T = 3939).

5.2 Connectedness in the US (2000 – 2015)

Analyzing the evolution over time of our large (329 × 329) connectedness matrices requires
some sort of cross-sectional aggregation. We begin with Figure 3, where we focus on cross-
sectional distribution and norms. In the top panel we report the distribution of mean con-
nectedness values Qi (t, z) for i = 1, . . . , n and, more precisely, their means, medians, 5-th,
and 95-th percentiles. In the bottom panel, we plot the Frobenius norm of the connectedness
matrices (other norms would be equally suitable, and actually yield very similar results).
In all plots of Figure 3, connectedness is evaluated at instantaneous and long-run level, i.e.
for z = 0 and z = 1.

Figure 3 shows that both long-run and instantaneous connectedness are spiking, quite dra-
matically, in conjunction with important financial crashes; this is particularly evident looking
at the bottom panel where, for sake of comparison with the overall market performance, we
are also plotting the daily values of the S&P 500 index. The turbulence at the beginning
of our sample is related to a series of events starting with the burst of the Dot-com bubble
early in 2000 and then followed by the 2002-2003 US recession — an event somehow related
to other turmoils around the world like the previous recessions in East Asia, shortly followed
by European and Japanese recessions — and the US stock market downturn of 2002. Con-
nectedness stays low and stable all the time until 2007 and the onset of the global financial
crisis, yielding the maximal connectedness values recorded in our sample.

Relatively quiet times have been overturned in the next few years, in relation to two
major events. The first one is a rapid increase in connectedness in April 2010, just about a
month before the “Flash crash” of May 6. A second abrupt connectedness increase is observed
in 2011, some three weeks before the “Black Monday” of August 8, 2011. As stressed in the
previous subsection, our bandwidth choice of ten business days (two weeks) in the time-domain
smoother means that we could still foresee this spike in long-run connectedness one week before
the occurrence of this dramatic event. In the same manner, we must remark that the link
between estimated connectedness and the burst of the Dot-com bubble in March 2000 is less
clear, since the large values of long-run connectedness we observe at the very beginning of our
sample are followed by weeks of low connectedness before the turmoil takes place. Finally, the
large drop of the S&P 500 in 2002 occurs less than two months after the increase in long-run
connectedness which is still quite high towards the end of June 2002 before further market
downturns. Albeit the development of an early warning system based on our connectedness
measures goes beyond the goal of this paper, these preliminary findings suggest the pertinence
of our analysis in real-time. We leave to future research a more systematic investigation in
this direction.

Consistent with the view that financial risk is a forward looking concept affecting future
investment strategies, a comparison of the two plots in the bottom panel of Figure 3 suggests
that long-run connectedness is, quantitatively, the most relevant concept. Nevertheless, it

13Additional results under alternative penalty functions and related settings proposed by Hallin and Lǐska
(2007) lead to the same conclusion. Furthermore, overestimating q has very little impact on qualitative results.

17



should be noticed that short-run dynamics also may reveal different patterns: see, for instance,
the 2010 connectedness spike which, at instantaneous level, is even more pronounced than in
the global financial crisis.

This impression is clearly confirmed when looking at the spectral connectedness results
in Figure 4. Since spectral connectedness are normalized by the size of the frequency band
considered, their scale allows for meaningful comparisons: we observe that connectedness
becomes stronger and stronger as we get rid of high-frequency components. Once we only
retain frequencies corresponding to cycles of at least one month, we obtain a connectedness
which is very similar to the norm of long-run connectedness in Figure 3. By and large,
the same picture is obtained if we restrict to the so-called business cycle frequencies (i.e., 4
to 32 quarters as in Baxter and King, 1999). We conclude that connectedness is somewhat
stable at low to mid frequencies. Baruńık and Křehĺık (2018) find more heterogeneity over
the spectrum of connectedness, but it is is hard to tell whether the difference is due to their
low-dimensional vector autoregressive modeling approach and/or to the lack of time-variation
in it.

One more confirmation of the big picture on the evolution of long-run connectedness —
as seen in the two right plots of Figure 3 and in those plots of Figure 4 which filter out
enough high frequencies — comes from the Fiedler number (as defined in Section 4.1.2) in
Figure 7. Borrowed from network theory, that quantity measures the strength of the edges
in our long-run connectedness graph, and in our data shows a strikingly similar evolution as
in the aforementioned estimates of connectedness. The other plot in Figure 7 shows that the
number of connected units increases in turmoil periods; a somewhat similar figure is obtained
by Billio et al. (2012).14

Beyond their norms and their evolution over time, we also can observe connectedness
matrices at few specific dates which have been selected in order to highlight differences.
In Figure 5 and 6, we present heatmaps of the long-run and instantaneous connectedness
matrices which, compared with those resulting from rolling covariances in Figure 2, reveal
that connectedness in the long-run absorbs, or arguably even amplifies, the time-variation in
the data while the short-run is relatively smoother over time.

5.3 Connectedness during the great crisis (2007–2009)

Going back to the right-hand plots of Figure 3, we observe that the highest value in long-run
connectedness corresponds with the onset of the crisis; its magnitude, moreover, is quite large
relatively to other peaks. Figure 8 essentially zooms into the same plots with added dashed
lines for the 99-th percentiles of the solid lines plotted in their time-series distributions from
the beginning of the sample to November 15, 2006 (the starting point of the crisis subsample
we now focus on); so doing, we are setting a benchmark to relatively rare outcomes and we
can observe their path in a more convenient scale.

The largest value observed in the norm of the long-run connectedness matrix is dated
October 26, 2008, shortly after the bankruptcy of Lehman Brothers (September 15, 2008) and
well before the minimum of the S&P 500 index during the March 9, 2009 bear market of 2007-
2009: in this time span the index continued to drop, recording an overall decrease of about
30-percent. The norm of the long-run connectedness matrix starts to reach relatively high
levels already during 2007. The 99-th percentile benchmark is almost continuously violated

14Both plots in Figure 7 are quite stable to sufficiently large choices of the percentile chosen for the ε-
neighborhood technique described in Section 4.1.2.
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in this subsample starting from as early as November 2006; the maximum norm of long-run
connectedness we estimate in December 2007 is about four time as large as the 99-th percentile
of its distribution until November 15, 2006. Several spikes in long-run connectedness are
observed during 2007. In late January 2007, long-run connectedness abruptly jumps to about
20 times its 99-th percentile, and, between August and September 2007, quite consistently
up to 30 times that same percentile. Finally, in the third week of December 2007, long-run
connectedness has a spectacular increase and does not revert for about three months; during
this stint, the long-run connectedness norm reaches its third largest value since the beginning
of our observation period. The maximal value — a spike in 2000 due to the burst of the
Dot-com bubble — is overcome in August 2008, after about three months of apparent calm in
which the market performed well. The mid-July 2008 connectedness increase is overwhelming
until about 6-7 weeks before March 9, 2009, when the S&P 500 eventually exhibits a turning
point and starts recovering.

All in all, the same picture arises from the distribution in the top panel of Figure 8, and
we must conclude that long-run connectedness was consistently experiencing a series of quite
rare events as early as 2007. For sake of comparison, the TED spread — a prominent measure
of perceived credit-risk — started to increase in August 2007, reaching its maximum between
September and October 2008. For a more narrative account of how the crisis affected the US
market and individual industries, we refer to the next section where connectedness is analysed
at a finer, sectoral, scale.

5.4 Sectoral evidence

Another sensible way to aggregate our results consists in taking into account the industrial
sectors of the stocks in our panel. In Figure 9 we consider the evolution over time of connec-
tedness within the main industry-specific sectors, as defined in equation (27). Sector-specific
connectedness essentially is an average total connectedness within the sector. Plotting the
differences between industry-specific connectedness and the panel-wide average total connec-
tedness provides (for long-run connectedness) interesting insights into the heterogeneity of
dynamics across the various sectors. This tells us whether the long-run connectedness in any
given sector comoves with that in the market exceeding, subceeding or remaining in lockstep
with it.

Probably unsurprisingly in hindsight, during the great financial crisis the connectednesses
of Banks, Financial Services, Real Estate and Investment Trusts, Life Insurance are the
largest. Also affected by the great crisis above and beyond the market average are the Elec-
tricity, Construction and Materials, Oil and Gas Producers, and to a lesser extent, Oil Equip-
ment and Services, and Nonlife Insurance sectors. A number of sectors display by and large
the same amount of connectedness as the market average; these are Aerospace and Defense,
Chemicals, Electronic and Electrical Equipment, General Retailers, Health Care Equipment
and Services, Support Services. The sectors weathering the storm in connectenedness as
compared with the average connectedness in the market are Food and Drug Retailers, Food
Producers, Media, Pharmaceuticals and Biotechnology, Software and Computer Services, To-
bacco, Technology, Hardware and Equipment.

Some sectors, quite closely related one each other, used to move in lockstep with the
market in the first half of our sample until the great crisis, then break apart afterwards;
this is the case of Household Goods and Home Construction, Industrial Engineering, Indus-
trial Metals, an Mining, Industrial Transportation, General Industrials, General Retailers,
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Forestry, and Paper.
The turmoils of early 2000’s are associated with high connectedness in some sectors which

are clearly related to the Dot-com bubble (Software and Computer Services, Technology
Hardware and Equipment, Media, Fixed Line Telecommunications) together with more “tra-
ditional” sectors (Electricity, Banks).

Two more results should be stressed from a broader observation of Figure 9 beyond the
crisis of 2007–2009. First, the heterogeneity we find across sectors is much less in calm times
than during financial turmoils. Second, the long-run connectedness norms of Banks, Financial
Services and Real Estate Investment Trusts are spiking higher than any other sector during
the most severe turmoils.

The pattern of average sectoral eigenvector centrality in Figure 10 shows that the most
central nodes belong in sectors where long-run connectedness is high.15 All in all, this figure
is indeed consistent with the results on sectoral connectedness previously discussed.

Finally, Table 1 is listing the firms associated with the most central nodes at the same
selected dates as in previously commented figures. There is strong evidence that centrality
dynamics have a sectoral flavour. In fact, at many of these selected dates, the most central
nodes belong to a few sectors: for example, while on April 27, 2000 most of the nodes in
the highest percentiles of the centrality distribution belong to Technology, Hardware and
Equipment, the same applies on October 30, 2008 to firms in Real Estate Investment Trusts.

A more focused investigation into such sectoral dynamics combining structural, economic,
identification with the block-structure of the industrial sectors in the spirit of Barigozzi et al.
(2018) goes beyond the goal of this paper. Nevertheless, it should be noticed that the common
factors possibly do have a locally pervasive effect in our panel of price ranges. Although
our time-varying GDFM (2) does not include any modeling of group-factor structure, we are
imposing no restriction against this form of cross-sectional dependence, and the decomposition
of connectedness measures into a sum of q orthogonal factor-specific contributions sheds some
light into that direction. In Figure 11, we show heatmaps of such decompositions — as defined
in equation (25) — applied to the long-run connectedness matrix. Inspection of that figure
indicates that, indeed, some factors might, at least temporarily, have a sectoral connotation
(as, e.g. , the second factor in April 27, 2000, the third factor in February 14, 2008, the first
and second factors in October 16, 2014, etc.).

6 Conclusions

We propose a novel method for the analysis of financial connectedness which, unlike that of
Diebold and Yilmaz (2014), is adequate for large datasets where episodes of systemic risk are
typically pervasive. Furthermore, allowing for time-varying parameters, our model is better
suited for the analysis of risk dynamics. Our method relies on a time-varying version of
the so-called General Dynamic Factor Model which is specifically designed for the analysis
of high-dimensional locally stationary processes in the sense of Dahlhaus (2009, 1997), and
extends previous work on dynamic factor models (especially recent results in Forni et al.,
2015, 2017) by allowing for time-varying loading filters and time-varying spectra. Thus, we
contribute to the recent, and rapidly growing, literature on non-stationary factor models (see
Mikkelsen et al., 2018; Su and Wang, 2017; Bates et al., 2013; Motta et al., 2011; Del Negro

15In Appendix we show centrality disaggregated n × T heatmaps for each individual firm, which exhibit
similar dynamics.
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and Otrok, 2008, among others) which, so far is dominated by time-varying factor models of
the static type (i.e., based on scalar factor loadings).

Our method indicates that the comovements in a high-dimensional dataset of daily price
ranges of constituents of the Standard & Poor 500 index are remarkably strong; this sug-
gests basing the analysis of connectedness on (estimators of) the impulse response functions
with respect to common factors or shocks — a straightforward source of systemic risk also
considered by Billio et al. (2012). In the empirical part of this work, we show that large
increases in connectedness — especially in their mid to low frequencies — are associated with
the most important turmoils in the stock market. Connectedness does not span all industrial
sectors in the same way and, especially during the turmoils of 2007–2009, Banks and, more
generally, firms in the financial sector had prevalent roles. Nevertheless, sectoral connected-
ness heterogeneity is found to decrease in the more recent part of our sample, after the great
crisis.

Two important questions are left for future research. First, we noticed how increasing
connectedness is associated with serious market downturns, often anticipating them; it seems
natural, thus, to develop an early warning system based on our connectedness measures
and investigate its performance. Second, a structural analysis along the lines of Barigozzi
et al. (2018) — but based our novel time-varying framework — would allow us to attach an
economic meaning to each individual common shock and shed more light on the sources of
connectedness and their propagation mechanisms.
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Rodŕıguez-Poo, J. M. and O. Linton (2001). Nonparametric factor analysis of residual time series.
Test 10 (1), 161–182.

Stock, J. H. and M. W. Watson (2002). Forecasting Using Principal Components From a Large Number
of Predictors. Journal of the American Statistical Association 97 (460), 1167–1179.

Su, L. and X. Wang (2017). On time-varying factor models: Estimation and testing. Journal of
Econometrics 198 (1), 84–101.

Vershynin, R. (2018). High dimensional probability. An introduction with applications in Data Science.
Cambridge University Press.

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing 17 (4), 395–416.

24



Figure 1: Share of variance explained by dynamic eigenvalues in the S&P500
panel of log ranges

Time series of estimated shares of variance accounted for by the first factor (blue line) and the first
three factors (red line). The share of variance explained at time t by the first k factors is defined as∑k

j=1
∑T
h=1 λ̂j;n,T (t/T ; θ`)∑n

j=1
∑T
h=1 λ̂j;n,T (t/T ; θ`)

, θ` = 2πhT `, ` = 1, . . . , b1/hT c

where λ̂j;n,T (t/T ; θ`) is the jth largest eigenvalue of Σ̂X
n,T (t/T, θ`) defined in (15).
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Figure 2: Covariance matrix at selected dates

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014

Rolling estimates of the sample covariance matrix using a triangular kernel.
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Figure 3: instantaneous and long-run connectedness

instantaneous long-run

Distribution of {Qi (t, 0)}ni=1 Distribution of {Qi (t, 1)}ni=1

Norm of Qn (t, 0) vs. S&P 500 Norm of Qn (t, 1) vs. S&P 500

Top panel: mean, median, 5-th and 95-th percentiles of the distribution of mean instantaneous (left
plots) and long-run (right plots) connectedness Qi (t, 0), Qi (t, 1), for i = 1, . . . , n as indicated in the
legend. Bottom panel: Frobenius norms of the instantaneous and long-run connectedness matrices
plotted together with the S&P 500 index, as indicated in the legend.
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Figure 4: Norm of spectral connectedness matrices QΘ;n (t)

Business cycle: 506
3π

∫ π/253
π/1012 Qn

(
t, e−ιkθ) dθ

At least one month: 11
π

∫ π/22
0 Qn

(
t, e−ιkθ) dθ

At least two weeks: 5
2π

∫ π/5
0 Qn

(
t, e−ιkθ) dθ

Two weeks or less: 5
8π

∫ π
π/5 Qn

(
t, e−ιkθ) dθ

One week or less: 5
6π

∫ π
2π/5 Qn

(
t, e−ιkθ) dθ

Time series of the Frobenius norm of the spectral connectedness matrices evaluated for different fre-
quency bands. Over each plot the period of the frequencies in the band considered and the formula
for the corresponding connectedness matrix are indicated. Business cycle frequencies correspond to
cycles between 4 and 32 quarters.
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Figure 5: Heatmaps of long-run connectedness, Qn (t, 1), at selected dates

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014
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Figure 6: Heatmaps of instantaneous connectedness Qn (t, 0) at selected dates

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014

Figure 7: Fiedler number and connected nodes in long-run connectedness

Fiedler number connected nodes
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Figure 8: Long-run connectednness during the great financial crisis.

Distribution of mean connectedness {Qi (t, 1)}ni=1

Norm of Qn (t, 1) vs. S&P 500

Top plot: the solid lines represent the 95-th percentile and the average, respectively, of the cross-
sectional distribution of the mean connectedness values Qi (t, 1) for i = 1, . . . , n at any given t, while
the dashed lines represent the 99-th percentiles of their own time series distributions in the subsample
running from January 4, 2000 to November 15, 2006. Bottom plot: the solid line is the time series of
the Frobenius norm of Qn (t, 1) while the dashed line is its 99-th percentile in the subsample running
from January 4, 2000 to November 15, 2006.
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Figure 9: Sectoral long-run connectedness

Aerospace and Defense Automobiles and Parts Banks

Beverages Chemicals Construction and Materials

Electricity Electronic and Electrical Equip. Financial Services (Sector)

Fixed Line Telecommunications Food Producers Food and Drug Retailers

Forestry and Paper Gas, Water and Multiutilities General Industrials

- Continued on next page -
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Figure 9 – continued from previous page

General Retailers Health Care Equip. and Services Household Goods and Home Constr.

Industrial Engineering Industrial Metals and Mining Industrial Transportation

Leisure Goods Life Insurance Media

Nonlife Insurance Oil Equip. and Services Oil and Gas Producers

Personal Goods Pharmaceuticals and Biotech. Real Estate Investment Trusts

- Continued on next page -
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Figure 9 – continued from previous page

Software and Computer Services Support Services Technology Hardware and Equip.

Tobacco Travel and Leisure

Blue lines are differences between the sectoral means Q[S(k), • ] (t, 1) for the sectors under reference
and the mean value across all firms. Red lines correspond to the zero value where sectoral mean
equals the overall mean.
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Figure 10: Eigenvector centrality in long-run connectedness at sectoral
level

At each point in time (years in abscissa), the centrality in the long-run connectedness newtork of
each industrial sector (in ordinate) is the corresponding element of the eigenvector associated with
the largest eigenvalue of a matrix whose generic entry is the sector-specific long-run connected-
ness Q[S(k), • ] (t, 1) defined in equation (27).
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Figure 11: Heatmaps of sectoral long-run connectedness matrices decomposed
by factor at selected dates.

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014

Heatmaps of the sectoral long-run connectedness matrices decomposed by the contribution of the
first three factors. These matrices relate to the selected dates indicated on the top of each heatmap.
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Table 1: Eigenvector centrality in long-run connectedness

27-Apr-2000
99-th percerntile

YAHOO Software and Computer Services
LEVEL 3 COMMS. Fixed Line Telecommunications
SANDISK Technology Hardware and Equipment

95-th percerntile
ORACLE Software and Computer Services
INTERNATIONAL BUS.MCHS. Software and Computer Services
INTEL Technology Hardware and Equipment
CISCO SYSTEMS Technology Hardware and Equipment
QUALCOMM Technology Hardware and Equipment
PRICELINE GROUP Travel and Leisure
BROADCOM A Technology Hardware and Equipment
CORNING Technology Hardware and Equipment
APPLIED MATS. Technology Hardware and Equipment
MOTOROLA SOLUTIONS Technology Hardware and Equipment
RED HAT Software and Computer Services
CITRIX SYS. Software and Computer Services
XILINX Technology Hardware and Equipment

29-Apr-2002
99-th percerntile

XCEL ENERGY Electricity
REGIONS FINL.NEW Banks
HUNTINGTON BCSH. Banks

95-th percerntile
PFIZER Pharmaceuticals and Biotechnology
HONEYWELL INTL. General Industrials
US BANCORP Banks
AMERICAN TOWER Real Estate Investment Trusts
ANADARKO PETROLEUM Oil and Gas Producers
ARCHER-DANLS.-MIDL. Food Producers
PPG INDUSTRIES Chemicals
APPLIED MATS. Technology Hardware and Equipment
XCEL ENERGY Electricity
HERSHEY Food Producers
ROCKWELL AUTOMATION Industrial Engineering
REGIONS FINL.NEW Banks
TIFFANY & CO General Retailers
BALL General Industrials
GOODYEAR TIRE & RUB. Automobiles and Parts
HUNTINGTON BCSH. Banks

25-Jun-2002
99-th percerntile

CARDINAL HEALTH Food and Drug Retailers
XCEL ENERGY Electricity
OMNICOM GROUP Media

95-th percerntile
FORD MOTOR Automobiles and Parts
TJX General Retailers
ARCHER-DANLS.-MIDL. Food Producers
AMER.ELEC.PWR. Electricity
ACTIVISION BLIZZARD Leisure Goods
CBS B Media
FIFTH THIRD BANCORP Banks
VIACOM B Media
LABORATORY CORP.OF AM. HDG. Health Care Equipment and Services
CMS ENERGY Electricity
AMEREN Gas, Water and Multiutilities
CINTAS Support Services
INTERPUBLIC GROUP Media

14-Feb-2008
99-th percerntile

DEERE Industrial Engineering
EATON General Industrials
KEYCORP Banks

95-th percerntile
BANK OF AMERICA Banks
DANAHER General Industrials
TARGET General Retailers
STRYKER Health Care Equipment and Services
EMERSON ELECTRIC Electronic and Electrical Equipment
AVALONBAY COMMNS. Real Estate Investment Trusts
GENERAL GW.PROPS. Real Estate Investment Trusts
PACCAR Industrial Engineering
C R BARD Health Care Equipment and Services
NORDSTROM General Retailers
MARTIN MRTA.MATS. Construction and Materials
NVIDIA Technology Hardware and Equipment
MACERICH Real Estate Investment Trusts

04-Sep-2008

- Continued on next page -
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Table 1 – continued from previous page

99-th percerntile
ALEXION PHARMS. Pharmaceuticals and Biotechnology
PERRIGO Pharmaceuticals and Biotechnology
RED HAT Software and Computer Services

95-th percerntile
BRISTOL MYERS SQUIBB Pharmaceuticals and Biotechnology
ELI LILLY Pharmaceuticals and Biotechnology
STARBUCKS Travel and Leisure
BROADCOM A Technology Hardware and Equipment
MYLAN Pharmaceuticals and Biotechnology
O REILLY AUTOMOTIVE General Retailers
ROSS STORES General Retailers
DOLLAR TREE General Retailers
HORMEL FOODS Food Producers
LEVEL 3 COMMS. Fixed Line Telecommunications
CENTURYLINK Fixed Line Telecommunications
AKAMAI TECHS. Software and Computer Services
TRACTOR SUPPLY General Retailers

02-Oct-2008
99-th percerntile

STARBUCKS Travel and Leisure
RED HAT Software and Computer Services
SANDISK Technology Hardware and Equipment

95-th percerntile
TIME WARNER Media
ALEXION PHARMS. Pharmaceuticals and Biotechnology
YAHOO Software and Computer Services
PERRIGO Pharmaceuticals and Biotechnology
CORNING Technology Hardware and Equipment
MICRON TECHNOLOGY Technology Hardware and Equipment
SKYWORKS SOLUTIONS Technology Hardware and Equipment
LEVEL 3 COMMS. Fixed Line Telecommunications
MOTOROLA SOLUTIONS Technology Hardware and Equipment
REGIONS FINL.NEW Banks
AGILENT TECHS. Electronic and Electrical Equipment
AKAMAI TECHS. Software and Computer Services
KEURIG GREEN MOUNTAIN Beverages

30-Oct-2008
99-th percerntile

SOUTHERN Electricity
PRAXAIR Chemicals
SL GREEN REALTY Real Estate Investment Trusts

95-th percerntile
MCDONALDS Travel and Leisure
UNITED PARCEL SER.B Industrial Transportation
NEXTERA ENERGY Electricity
PUBLIC STORAGE Real Estate Investment Trusts
ACE Nonlife Insurance
HEALTH CARE REIT Real Estate Investment Trusts
NORFOLK SOUTHERN Industrial Transportation
ST.JUDE MEDICAL Health Care Equipment and Services
PPL Electricity
PROLOGIS Real Estate Investment Trusts
HCP Real Estate Investment Trusts
PROGRESSIVE OHIO Nonlife Insurance
EVERSOURCE ENERGY Electricity

28-Nov-2008
99-th percerntile

EXXON MOBIL Oil and Gas Producers
CHEVRON Oil and Gas Producers
TARGET General Retailers

95-th percerntile
UNITED PARCEL SER.B Industrial Transportation
CONOCOPHILLIPS Oil and Gas Producers
NEXTERA ENERGY Electricity
EMERSON ELECTRIC Electronic and Electrical Equipment
PRAXAIR Chemicals
HEALTH CARE REIT Real Estate Investment Trusts
HCP Real Estate Investment Trusts
CAMPBELL SOUP Food Producers
EVERSOURCE ENERGY Electricity
HESS Oil and Gas Producers
MARTIN MRTA.MATS. Construction and Materials
REPUBLIC SVS.A Support Services
CH ROBINSON WWD. Industrial Transportation

08-Apr-2010
99-th percerntile

PROCTER & GAMBLE Household Goods and Home Construction
EXELON Electricity
CENTURYLINK Fixed Line Telecommunications

95-th percerntile
3M General Industrials
UNITED TECHNOLOGIES Aerospace and Defense

- Continued on next page -
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Table 1 – continued from previous page

REYNOLDS AMERICAN Tobacco
EXPRESS SCRIPTS HOLDING Health Care Equipment and Services
HEWLETT-PACKARD Technology Hardware and Equipment
CATERPILLAR Industrial Engineering
GENERAL DYNAMICS Aerospace and Defense
AUTOMATIC DATA PROC. Support Services
CSX Industrial Transportation
PG&E Electricity
CUMMINS Industrial Engineering
QUEST DIAGNOSTICS Health Care Equipment and Services
BED BATH & BEYOND Household Goods and Home Construction

06-May-2010
99-th percerntile

PROCTER & GAMBLE Household Goods and Home Construction
3M General Industrials
CENTURYLINK Fixed Line Telecommunications

95-th percerntile
UNITED TECHNOLOGIES Aerospace and Defense
REYNOLDS AMERICAN Tobacco
EXPRESS SCRIPTS HOLDING Health Care Equipment and Services
HEWLETT-PACKARD Technology Hardware and Equipment
GENERAL DYNAMICS Aerospace and Defense
AUTOMATIC DATA PROC. Support Services
JOHNSON CONTROLS Support Services
CSX Industrial Transportation
EXELON Electricity
PG&E Electricity
TYSON FOODS A Food Producers
QUEST DIAGNOSTICS Health Care Equipment and Services
BED BATH & BEYOND Household Goods and Home Construction

14-Jul-2011
99-th percerntile

ANADARKO PETROLEUM Oil and Gas Producers
EMERSON ELECTRIC Electronic and Electrical Equipment
SIGMA ALDRICH Pharmaceuticals and Biotechnology

95-th percerntile
COCA COLA Banks
INTERNATIONAL BUS.MCHS. Software and Computer Services
DANAHER General Industrials
CATERPILLAR Industrial Engineering
DEERE Industrial Engineering
CONSOLIDATED EDISON Electricity
WEC ENERGY GROUP Gas, Water and Multiutilities
AMETEK Electronic and Electrical Equipment
STERICYCLE Support Services
MACERICH Real Estate Investment Trusts
FASTENAL Support Services
DARDEN RESTAURANTS Travel and Leisure
KEURIG GREEN MOUNTAIN Beverages

16-Oct-2014
99-th percerntile

UNION PACIFIC Industrial Transportation
ROYAL CARIBBEAN CRUISES Travel and Leisure
KANSAS CITY SOUTHERN Industrial Transportation

95-th percerntile
ALLERGAN Pharmaceuticals and Biotechnology
THERMO FISHER SCIENTIFIC Health Care Equipment and Services
EOG RES. Oil and Gas Producers
HALLIBURTON Oil Equipment and Services
WILLIAMS Oil Equipment and Services
AIR PRDS.& CHEMS. Chemicals
CSX Industrial Transportation
PPG INDUSTRIES Chemicals
NORFOLK SOUTHERN Industrial Transportation
SHERWIN-WILLIAMS Construction and Materials
PIONEER NTRL.RES. Oil and Gas Producers
EQT Oil and Gas Producers
CABOT OIL & GAS A Oil and Gas Producers

Lists of the firms associated with the most central nodes at given time points.
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A Proof of Proposition 1
We start with two preliminary but straightforward lemmas. Throughout, let ρT := TbThT and ζn,T :=
min(ρT , n).

Lemma A1. For any n ∈ N0,

sup
τ∈
[
bT

2 ,1− bT

2

] max
`=1,...,

⌊
1

hT

⌋ max
i,j=1,...,n

∣∣σ̂Xij;n,T (τ, θ`)− σXij (τ, θ`)
∣∣ = OP(ρ−1/2

T ) (A1)

as T →∞, with θ` = 2πhT `, ` = 1, . . . , b1/hT c.

Proof. The result readily follows from (22) and an application of Chebychev’s inequality. �

Lemma A2. The eigenvalues λXj;n(τ, θ) of ΣX
n (τ, θ) are such that

(i) there exist continuous functions θ 7→ αj(τ, θ) and θ 7→ βj(τ, θ) , j = 1, . . . , q, and an integer NX
such that, for all n > NX , all τ ∈ [0, 1], and Lebesgue-a.e. over θ ∈ (0, 2π],

β1(τ, θ) ≥
λX1;n(τ, θ)

n
≥ α1(τ, θ) > β2(τ, θ) ≥

λX2;n(τ, θ)
n

≥ . . .

. . . ≥ αq−1(τ, θ) > βq(τ, θ) ≥
λXq;n(τ, θ)

n
≥ αq(τ, θ) > 0; (A2)

(ii) there exists a constant BX such that λXq+1;n(τ, θ) ≤ BX for all n ∈ N, all τ ∈ [0, 1] and
all θ ∈ (0, 2π].

Proof. The result readily follows from Assumptions (C3) and (C4), and an application of Weyl’s
inequality. �

Turning to the proof of Proposition 1, let us proceed as in the proof of Proposition 7 of Forni et al.
(2017). We only highlight here the main steps; details follow along the same lines as in Appendix B
(same reference), and are left to the reader.

Lemma A1 implies that, uniformly in τ ∈ [bT /2, 1− bT /2] and ` = 1, . . . , b1/hT c,

1
n

∥∥∥Σ̂X
n,T (τ, θ`)−ΣX

n (τ, θ`)
∥∥∥ ≤ 1

n

√√√√ n∑
i=1

n∑
j=1

∣∣∣σ̂Xij;n,T (τ, θ`)− σXij (τ, θ`)
∣∣∣2 = OP(ρ−1/2

T ) (A3)

as n, T →∞. Now, for all τ and θ

1
n

∥∥∥Σ̂X
n,T (τ, θ)−Σχ

n(τ, θ)
∥∥∥ ≤ 1

n

∥∥∥Σ̂X
n,T (τ, θ)−ΣX

n (τ, θ)
∥∥∥+ 1

n

∥∥Σξ
n(τ, θ)

∥∥ ,
and hence, in view of Assumption (C4),

1
n

∥∥∥Σ̂X
n,T (τ, θ`)−Σχ

n(τ, θ`)
∥∥∥ = OP(max(ρ−1/2

T , n−1)) (A4)

as n, T →∞ and uniformly in τ ∈ [bT /2, 1− bT /2] and ` = 1, . . . , b1/hT c.
Let ei denote the ith canonical coordinate vector in Rn. From (A3) and (A4), we immediately

obtain, uniformly in τ ∈ [bT /2, 1− bT /2], ` = 1, . . . , b1/hT c and i = 1, . . . , n,

1√
n

∥∥∥e′i (Σ̂X
n,T (τ, θ`)−ΣX

n (τ, θ`)
)∥∥∥ = OP(ρ−1/2

T ), (A5)

and
1√
n

∥∥∥e′i (Σ̂X
n,T (τ, θ`)−Σχ

n(τ, θ`)
)∥∥∥ = OP(ζ−1/2

n,T ) (A6)
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as n, T →∞. This is the analogue of Lemma 1 in Forni et al. (2017).
Next, it follows from (A2) and (A4) that, as n, T →∞,

1
n

∣∣∣λ̂Xj;n,T (τ, θ`)− λχj;n(τ, θ`)
∣∣∣ ≤ 1

n

∥∥∥Σ̂X
n,T (τ, θ`)−Σχ

n(τ, θ`)
∥∥∥

= OP(max(ρ−1/2
T , n−1)) = OP(ζ−1/2

n,T ), (A7)

still uniformly in τ ∈ [bT /2, 1− bT /2], ` = 1, . . . , b1/hT c and i = 1, . . . , n (see Lemma 2 in Forni et al.,
2017).

Denoting by P̂X
n,T (τ, θ) and Pχ

n(τ, θ) the n × q matrices of leading eigenvectors of Σ̂X
n,T (τ, θ)

and Σχ
n(τ, θ), respectively, we can show (as in Lemma 3 of Forni et al., 2017) that, uniformly

in τ ∈ [bT /2, 1− bT /2] and ` = 1, . . . , b1/hT c,∥∥∥P̂X†
n,T (τ, θ`)Pχ

n(τ, θ`)−W(τ, θ`)
∥∥∥ = OP(max(ρ−1/2

T , n−1)) = OP(ζ−1/2
n,T ). (A8)

as n, T → ∞ for some diagonal q × q matrix W(τ, θ`) the complex diagonal entries of which have
modulus one.

Proceeding as in Lemma 4 of Forni et al. (2017), one can show that, denoting by Λ̂X
n,T (τ, θ)

and Λχ
n(τ, θ) the q×q diagonal matrices of leading eigenvalues of Σ̂X

n,T (τ, θ) and Σχ
n(τ, θ), as n, T →∞,

still uniformly in τ ∈ [bT /2, 1− bT /2], ` = 1, . . . , b1/hT c, and i = 1, . . . , n,∥∥∥∥e′i(Pχ
n(τ, θ`) [Λχ

n(τ, θ`)]1/2 W(τ, θ`)− P̂X
n,T (τ, θ`)

[
Λ̂X
n,T (τ, θ`)

]1/2
)∥∥∥∥ = OP(ζ−1/2

n,T ). (A9)

Recall that the estimator of the spectral density matrix of common components is

Σ̂χ
n,T (τ, θ) = P̂X

n,T (τ, θ)Λ̂X
n,T (τ, θ)P̂X†

n,T (τ, θ)

with (i, j) entry σ̂χij;n,T (τ, θ). We then have that, as n, T →∞,

sup
τ∈
[
bT

2 ,1− bT

2

] max
`=1,...,

⌊
1

hT

⌋ max
i,j=1,...,n

|σ̂χij;n,T (τ, θ`)− σχij(τ, θ`)| = OP(ζ−1/2
n,T ), (A10)

which is the analogue of of Proposition 7 in Forni et al. (2017).
The (i, j) entry of the estimated lag k autocovariance matrix Γ̂χn,T (τ, k) defined in (17) is

γ̂χij;n,T (τ, k) = 2πbhT c
b1/hT c∑
`=1

eιkθ` σ̂χij;n,T (τ, θ`); (A11)

by definition of a lag k autocovariance, its population counterpart satisfies

γχij(τ, k) =
∫ 2π

0
eιkθσχij(τ, θ)dθ. (A12)
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Therefore, for any given lag k, we have (letting θ0 := 0 and θb1/hT c+1 := 2π)

∣∣∣γ̂χij;n,T (τ, k)− γχij(τ, k)
∣∣∣ ≤ 2πbhT c

b1/hT c∑
`=1

∣∣∣eιkθ` σ̂χij;n,T (τ, θ`)− eιkθ`σχij(τ, θ`)
∣∣∣

+

∣∣∣∣∣∣2πbhT c
b1/hT c∑
`=1

eιkθ`σχij(τ, θ`)−
∫ 2π

0
eιkθσχij(τ, θ)dθ

∣∣∣∣∣∣
≤ 2πbhT c

b1/hT c∑
`=1

∣∣∣σ̂χij;n,T (τ, θ`)− σχij(τ, θ`)
∣∣∣

+ 2πbhT c
b1/hT c∑
`=1

max
θ`−1≤θ≤θ`

∣∣eιkθ`σχij(τ, θ`)− e
ιkθσχij(τ, θ)

∣∣
≤ 2π max

`=1,...,
⌊

1
hT

⌋ ∣∣∣σ̂χij;n,T (τ, θ`)− σχij(τ, θ`)
∣∣∣ (A13)

+ 2πbhT cC2
2

b1/hT c∑
`=1

max
θ`−1≤θ≤θ`

∣∣eιkθ` − eιkθ
∣∣

+ 2πbhT c
b1/hT c∑
`=1

max
θ`−1≤θ≤θ`

∣∣σχij(τ, θ`)− σχij(τ, θ)∣∣
=OP(ζ−1/2

n,T ) +O(hT ),

where C2 is the constant in Assumption (B2); (A10) was used to bound the first term, the second one
is obviously bounded, and the third one is bounded in view of of Assumption (B).

Now, since (A10) holds uniformly, from (A13) and the fact that hT < T−1/2, by Assumption (F),
we have

sup
τ∈
[
bT

2 ,1− bT

2

] max
i,j=1,...,n

∣∣∣γ̂χij;n,T (τ, k)− γχij(τ, k)
∣∣∣ = OP(ζ−1/2

n,T ), (A14)

which extends Proposition 8 in Forni et al. (2017) to the time-varying case.
We now turn to Part (ii) of the estimation procedure (VAR filtering). Assuming that n factorizes,

for some integer m, into m(q + 1), m distinct (q + 1)-dimensional VAR models of order at most S
(in view of Assumption (D2)) are to be estimated via Yule-Walker. For the sake of simplicity, let us
assume S = 1: the Yule-Walker estimators of the VAR(1) coefficients (see also (18)) then are

Âk
n,T (τ) = Γ̂χ

k

n,T (τ, 1)
[
Γ̂χ

k

n,T (τ, 0)
]−1

, k = 1, . . . ,m.

where Γ̂χ
k

n,T (τ, `) is the (q+1)×(q+1) sub-matrix of Γ̂χn,T (τ, `) corresponding to the lag ` autocovariance
matrix of the subvector χkn,T ;τ .

Assumption (D4) and the consistency of Γ̂χ
k

n,T (τ, 0) imply that det Γ̂χ
k

n,T (τ, 0) > d/2 with probability
arbitrarily close to one for T large enough. The same arguments as in Appendix C of Forni et al. (2017)
and (A14) then entail, as n, T →∞,

sup
τ∈
[

bT
2 ,1− bT

2

] max
k=1,...,m

∥∥∥Âk
n,T (τ)−Ak

n(τ)
∥∥∥ = OP(ζ−1/2

n,T ), (A15)

which extends Proposition 9 in Forni et al. (2017) to the time-varying setting. Moreover, writ-
ing Ân,T (τ) for the n × n block-diagonal matrix with siagonal blocks Â1

n,T (τ), . . . , Âm
n,T (τ), from
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(A15) we have
sup

τ∈
[

bT
2 ,1− bT

2

] max
k=1,...,m

1√
n

∥∥∥Ân,T (τ)−An(τ)
∥∥∥ = OP(ζ−1/2

n,T ), (A16)

since An(τ) has only m(q + 1)2 non-zero entries.

We now let t = bτT c and TT := {bTbT

2 c, . . . , T − b
TbT

2 c}, and establish the following two lemmas.

Lemma A3. Under Assumptions (A) and (B),
(i) maxt∈TT

maxi=1,...,n |Xit| = OP(log1/2 T );
(ii) maxt∈TT

maxi=1,...,n |Xit;t/T | = OP(log1/2 T ).

Proof. First notice that since {ut} is Gaussian because of Assumption (A1), then for any ε > 0,
there exists an M > 0 such that (see e.g. Section 2.5. in Vershynin, 2018)

P(max
t∈TT

max
j=1,...,q

|ujt| > ε) ≤ TqP(|ujt| > ε) ≤ 2Tq exp
(
−ε2M

)
.

Hence, maxt∈TT
maxj=1,...,q |ujt| = OP(log1/2 T ). Likewise, since we assume n = O(Tω) for some ω > 0,

then maxt∈TT
maxj=1,...,n |ηjt| = OP(log1/2 T ). The proof then follows from square-summability of the

coefficients in (3), (4), (7) and (8) due to Assumptions (B1), (B2), and (B5). �

Lemma A4. Under Assumptions (A) and (B),

max
t∈TT

max
i=1,...,n

|Xit −Xit;t/T | = OP(T−1 log1/2 T ).

Proof. First let us show that

max
t∈TT

max
i=1,...,n

|χit − χit;t/T | = OP(T−1 log1/2 T ). (A17)

Without loss of generality, let us assume q = 1: index j and the sums over j then can be dropped.
From (3) and (7), for any i and K,

∣∣χit − χit;t/T ∣∣ ≤ K∑
k=0
|c∗ik(t)− cik(t/T )| |ut−k|+

∣∣∣∣∣
∞∑

k=K+1
(c∗ik(t)− cik(t/T ))ut−k

∣∣∣∣∣ .
Assumptions (B1) and (B2) imply that, for any ε > 0 and η > 0, there exists a K∗ = K(ε, η)
independent of i, t, and T such that

P
[∣∣∣∣∣

∞∑
k=K∗+1

(c∗ik(t)− cik(t/T ))ut−k

∣∣∣∣∣ > η/2
]
≤ ε/2.

Hence,

P
[∣∣χit − χit;t/T ∣∣ > η

]
≤ P

[
K∗∑
k=0
|c∗ik(t)− cik(t/T )| |ut−k| > η/2

]

+ P
[∣∣∣∣∣

∞∑
k=K∗+1

(c∗ik(t)− cik(t/T ))ut−k

∣∣∣∣∣ > η/2
]

≤ P
[
K∗∑
k=0
|c∗ik(t)− cik(t/T )| |ut−k| > η/2

]
+ ε/2. (A18)
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Now, from B4,

P
[
K∗∑
k=0
|c∗ik(t)− cik(t/T )| |ut−k| > η/2

]
≤ P

[
K∗C4

T
max

1≤t≤T
|ut| > η/2

]

where (see the proof of Lemma A3) max1≤t≤T |ut| isOP(log1/2 T ). It follows that there exists T ∗= T (ε, η)
independent of i and t such that

P
[
K∗∑
k=0
|c∗ik(t)− cik(t/T )| |ut−k| > η/2

]
≤ ε/2 (A19)

for all T ≥ T ∗; (A17) follows from putting together (A18) and (A19). The proof of

max
t∈TT

max
i=1,...,n

|ξit − ξi;t/T | = OP(T−1 log1/2 T )

follows along the same steps. The claim follows. �

Proceeding to step (iii) of the estimation procedure, letting t = bτT c and S = 1 in (19), we obtain

Ẑnt;t/T :=
[
In − Ân,T (t/T )L

]
Xnt, t ∈ TT := {bTbT

2 c, . . . , T − b
TbT

2 c}. (A20)

Defining
Z̃nt;t/T := [In −An(t/T )L] Xnt, t ∈ TT , (A21)

it follows from (A16) and Lemma A3 that, as n, T →∞ (note that the filters in (A20) and (A21) just
load (q + 1) series at a time)

max
t∈TT

1√
n

∥∥∥Ẑnt;t/T − Z̃nt;t/T
∥∥∥ = OP(ζ−1/2

nT log1/2 T ). (A22)

Lemma A4 moreover implies that, as n, T →∞,

max
t∈TT

1√
n

∥∥∥Z̃nt;t/T − Znt;t/T
∥∥∥ = OP(T−1 log1/2 T ). (A23)

Combining (A22) and (A23) yields

max
t∈TT

1√
n

∥∥∥Ẑnt;t/T − Znt;t/T
∥∥∥ = OP(ζ−1/2

nT log1/2 T ) (A24)

as n, T →∞.
Next, consider the rolling covariance matrix for the unobservable Znt;t/T

Γ̂Zn (t/T ) := 1
T

T∑
s=1

J
(
t− s
TbT

)
Zns;t/TZ′ns;t/T , t ∈ TT . (A25)

Then, comparing (20) with (A25),

1
n

∥∥∥Γ̂Ẑn (t/T )− Γ̂Zn (t/T )
∥∥∥ = 1

nT

∥∥∥∥∥
T∑
s=1

J
(
t− s
TbT

)[
Ẑns;t/T Ẑ′ns;t/T − Zns;t/TZ′ns;t/T

]∥∥∥∥∥
≤ 1
nT

∥∥∥∥∥
T∑
s=1

[
Ẑns;t/T Ẑ′ns;t/T − Zns;t/TZ′ns;t/T

]∥∥∥∥∥ (A26)
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since J(x) ≤ 1 for all x ∈ R. Now, by generalizing the arguments of Appendix D and especially
Lemma 11 in Forni et al. (2017), we can bound, using (A24), the right-hand side of (A26) uniformly
over t ∈ TT , so that

max
t∈TT

1
n

∥∥∥Γ̂Ẑn (t/T )− Γ̂Zn (t/T )
∥∥∥ = OP(ζ−1/2

n,T log1/2 T ) (A27)

as n, T → ∞. Moreover, letting ΓZn (t/T ) denote the time-varying covariance matrix of the filtered
process Zn;t/T obtained from Xn;t/T as defined in (6) and (7), from Rodŕıguez-Poo and Linton
(2001, Proposition 3.2) and Motta et al. (2011, Theorem 1), we have (since (TbT )−1/2 is dominated
by (TbThT )−1/2)

max
t∈TT

1
n

∥∥∥Γ̂Zn (t/T )− ΓZn (t/T )
∥∥∥ = OP((bTT )−1/2) = OP(ρ−1/2

T ) (A28)

as n, T →∞.
Now, by Assumption (A1) we have E[utu′t] = Iq, therefore for all τ ∈ [0, 1] the common com-

ponent of the static factor model (14) has covariance Γψn(τ) = Rn(τ)R′n(τ) and by construction we
have Rn(τ) := Vψ

n(τ)[Mψ(τ)]1/2, where Mψ(τ) is the q × q diagonal matrix with the q largest eigen-
values of Γψn(τ) and Vψ

n(τ) the n× q matrix of the corresponding normalized eigenvectors. Following
the same arguments as in Proposition 10 in Forni et al. (2017), starting from of (A27) and (A28) we
obtain, as n, T →∞,

max
t∈TT

1
n

∥∥∥M̂Ẑ(t/T )−Mψ(t/T )
∥∥∥ = OP(ζ−1/2

n,T log1/2 T ),

and
max
t∈TT

∥∥∥V̂Ẑ(t/T )−Vψ(t/T )
∥∥∥ = OP(ζ−1/2

n,T log1/2 T ).

Therefore, since, by definition, R̂n(t/T ) := V̂Ẑ
n (t/T )[M̂Ẑ(t/T )]1/2, we have

max
t∈TT

1√
n

∥∥∥R̂n(t/T )−Rn(t/T )S(t/T )
∥∥∥ = OP(ζ−1/2

n,T log1/2 T ), (A29)

still as n, T → ∞, where S(t/T ) is a q × q diagonal matrix with entries ±1. By combining (A15)
and (A29), and in view of (the definition of impulse response functions)

Ĉ∗n,T (t, L) := [Ân,T (t/T, L)]−1R̂n,T (t/T ), Cn(t/T, L) := [An(t/T, L)]−1Rn(t/T ),

for any given k ≥ 0, as n, T →∞, we have

max
t∈TT

max
i=1,...,n
j=1,...,q

∣∣ĉ∗ijk;n,T (t)− sj(t)cijk(t/T )
∣∣ = OP(ζ−1/2

n,T log1/2 T ). (A30)

Moreover, from Assumption (B4), for any given k ≥ 0, as T →∞,

max
t∈TT

max
i=1,...,n
j=1,...,q

∣∣c∗ijk(t)− cijk(t/T )
∣∣ = O(T−1). (A31)

Combining (A30) and (A31) completes the proof. �
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B Additional empirical results

Figure B12: Idiosyncratic components zero-frequency coherence at selected
dates

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014

Heatmaps, at selected dates, of the time-varying zero-frequency spectral coherence matrix of the

estimated idiosyncratic components, with generic entry
∣∣∣σ̂ξij;n,T (t, 0)

∣∣∣2/σ̂ξii;n,T (t, 0)σ̂ξjj;n,T (t, 0),
i, j = 1, . . . , n.
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Figure B13: Common components zero-frequency coherence at selected dates

27-Apr-2000 29-Apr-2002 25-Jun-2002 14-Feb-2008

04-Sep-2008 02-Oct-2008 30-Oct-2008 28-Nov-2008

08-Apr-2010 06-May-2010 14-Jul-2011 16-Oct-2014

Heatmaps, at selected dates, of the time-varying zero-frequency spectral coherence matrix of the estim-

ated common components, with generic entry
∣∣∣σ̂χij;n,T (t, 0)

∣∣∣2/σ̂χii;n,T (t, 0)σ̂χjj;n,T (t, 0), i, j = 1, . . . , n.
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Figure B14: Time-varying eigenvector centrality in long-run connectedness

90-th percentile

95-th percentile

Top panel: n×T -dimensional heatmaps of eigenvector centrality in long-run connectedness; dark cells
indicate that, at the date in abscissa, the corresponding firm is above the 90-th percentile of the long-
run connectedness eigenvector centrality distribution. Bottom panel: n× T -dimensional heatmaps of
eigenvector centrality in long-run connectedness; dark cells indicate that, at the date in abscissa, the
corresponding firm is above the 95-th percentile of the long-run connectedness eigenvector centrality
distribution.
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