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ABSTRACT 
 
A multiproduct cost function is estimated for English higher education institutions using a 
panel of data from recent years. The panel approach allows estimation by means of a 
random parameter stochastic frontier model which provides considerable new insights in 
that it allows the impact on costs of inter-institutional differences in the cost function itself 
to be distinguished from inter-institutional differences in efficiency. The approach used 
here therefore resembles in some respects the non-parametric methods of efficiency 
evaluation.  We report also on measures of average incremental cost of provision and on 
returns to scale and scope.  
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1. Introduction 
 

Research on efficiency measurement has, since the seminal work of Farrell (1958) 
bifurcated, with economists typically following the route of statistical analysis (Aigner et 
al., 1977) and management scientists characteristically opting for a non-parametric route 
grounded in linear programming (Charnes et al., 1978). The former approach has come to 
be known as stochastic frontier analysis, the latter as data envelopment analysis (DEA). The 
relative merits and demerits of the two approaches are by now well known: the parametric 
statistical approach benefits from the availability of the toolkit of statistical inference, but 
imposes a common functional form and common parameters on all decision-making units; 
the alternative non-parametric approach is attractive in that it does not impose a common 
loss function on all units, but it lacks a statistical apparatus and its results may be sensitive 
to the presence of outliers. 
 
Recent developments in the analysis of panel data have made available a new approach 
which combines the merits of both the statistical and non-parametric methodologies while 
suffering from none of the drawbacks. Tsionas (2002) and Greene (2005) have developed 
random parameter formulations of the stochastic frontier model which (in common with 
data envelopment analysis) allow a separate loss function to be estimated for each decision-
making unit while (in common with traditional frontier models) retaining the apparatus of 
statistical inference. In essence these models are simply a generalisation of the random 
effects frontier model introduced by Battese and Coelli (1995); while the random effects 
model allows only the constant to vary across decision-making units, however, the random 
parameters model allows any number of the other coefficients to vary as well. A distinction 
between these models and data envelopment analysis is that the cross-unit variation is 
constrained to follow a specified statistical distribution; this constraint allows us to retain 
the toolkit of statistical inference. 
 
In the context of higher education institutions, the development of this new methodology is 
particularly significant. It is well understood that HEIs do not represent an homogenous 
group. Some are old, some are new, some are big some are small, some focus on certain 
subject groups, others focus on others, some are comprehensive in their provision, others 
are more specialised, some are research intensive, others not, and so on. Early studies of 
cost functions for UK institutions (such as Glass et al., 1995a, 1995b) focused purely on 
traditional universities. Later studies (for example, Johnes, 1997) looked at all universities, 
but excluded other providers of higher education such as colleges. The most recent work 
(Johnes et al., 2005) includes higher education colleges as well as universities, but devotes 
much space to the separate estimation of cost functions specific to certain pre-specified 
groups of institutions. This approach is far from ideal, however, because the distinctions 
between traditional universities, former polytechnics, and colleges of higher education have 
become increasingly blurred over time. An alternative approach, and the one on which the 
present paper is founded, is to develop an integrated framework for the estimation of costs, 
but to let the data decide the parameters of the cost function that apply uniquely to each 
institution.  
 
To motivate the analysis a little further, consider a comparison between four institutions. 
One is an ancient university, where learning is delivered primarily through small group 
tutorials. This university has high costs because the student:staff ratio is necessarily low. 
But it delivers learning in a form that might be deemed desirable, albeit not one that would 
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be cost-effective if applied to the mass of higher education institutions.1 The second 
institution might also have high costs, but in this case they are due to locational factors; 
perhaps the institution is located in the nation’s capital, where space and other costs are 
relatively high. The third institution has relatively high costs because (within the subject 
mix categories used in the analysis) it teaches expensive subjects; for instance, medicine 
may be more costly to deliver than other science subjects, but our analysis fails to 
disaggregate subjects sufficiently to identify medicine as a separate output. The fourth 
institution has moderate costs, as it does not have an adverse location or a need to employ 
unusually expensive teaching technologies. Now in a simple cross-section frontier analysis, 
the first three institutions may appear to be inefficient because of their high costs. In fact, 
however, there are reasonable explanations for these high costs, and these should not 
necessarily be put down to inefficiency. It is clear, therefore, that it is desirable that we 
should establish a method whereby unobserved heterogeneity in the cost function across 
institutions, on the one hand, and inefficiency, on the other, can be disentangled. That is the 
aim of this paper. 
 
We employ recent developments in order to analyse the cost function for each higher 
education institution in England. Both random effects and more general random parameters 
models are estimated using panel data for three years, 2000-01 through 2002-03. Hence 
differences in intercept and slope coefficients across institutions can be estimated alongside 
differences in institutions’ efficiency. The next section discusses the data. Results and 
analysis are provided in the following section. The paper ends with a conclusion and 
suggestions for further research. 
 
 
2. Data 
 
Our data are drawn from English institutions of higher education over the three year period 
from 2000-01 through 2002-03. Some 121 institutions are included in the analysis; this 
includes ancient universities (such as Oxford and Cambridge), traditional universities 
(comprising all those institutions with university status prior to 1992), new universities 
(granted university status in or since 1992), and colleges of higher education.2  The sample 
therefore includes a heterogeneity of institutional types, and it is likely that it would be 
inappropriate to impose on any model of costs based on this sample a parametric form that 
does not allow coefficients to vary at least somewhat across observations. 
 
All data are obtained from the Higher Education Statistics Agency (HESA): aggregate 
student numbers are published in Students in Higher Education Institutions, and financial 
statistics are available from Resources in Higher Education Institutions; institution-specific 
information about student numbers, disaggregated by subject area, was obtained from 
unpublished HESA sources. All financial data used in the study have been adjusted to 
2002-03 values3. Student numbers are expressed as full-time equivalents. The costs 
measure includes both current and capital (in the form of depreciation) expenditures, but 
excludes ‘hotel’ type costs. These last costs, which measure costs due to the provision of 
student residences and catering, vary considerably from institution to institution, but they 
                                                 
1 We realise, of course, that this is contentious. The assumption here is that the user of the analysis has a will 
to see teaching technologies of this kind preserved in some institutions but not others.  
2 A small number of instutions which changed significantly in character over the three year period, and for 
which therefore consistent data series are not available, is excluded from the sample. 
3 RPI inflators of 1.0366 and 1.0294 were applied to 2000/01 and 2001/02 figures respectively. 
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are costs that are generally recovered directly by imposing user charges, and their level in 
any one institution does not necessarily reflect the level of educational provision (the core 
business of the institution) to any great degree. In common with many other studies (dating 
back as far as Cohn et al., 1989), we use research income (both from research grants and 
contracts and from the funding council) as a proxy for research output. The limitations of 
this approach have been well rehearsed in the literature. We note that this measure is very 
highly correlated with more output-oriented measures (such as those derived from Research 
Assessment Exercise scores – see, for example, 
http://www.gla.ac.uk/rae/ukweight2001.xls), and we can therefore be confident that the use 
of our financially based measure does not bias the key results of the present paper. In 
common with the majority of previous empirical studies (Cohn et al. 1989; Glass et al. 
1995a; 1995b; Johnes 1997; Stevens 2005) we do not include a measure of the third 
mission output of higher education institutions (namely knowledge and skills transfer). This 
is a deviation from the approach in the most recent study (Johnes et al. 2005) but is a 
necessary omission because the complexity of the statistical technique means that the 
estimation of the parameters is particularly demanding (see section 3). A parsimonious 
specification of the model is also desirable in order to avoid problems of multicollinearity. 
It is for these reasons that students are divided into only two broad subject groups, namely 
science (including medicine) and non-science. 
 
Descriptive statistics appear in Table 1. One thing is very clear from these: the standard 
deviations for all variables are high in relation to the mean. While the means reported in the 
table refer, in a statistical sense, to a typical institution, the notion of such a typical 
institution can be very misleading. The higher education sector in England is one 
characterised by great heterogeneity.  Nonetheless, the representative model of an 
institution that is suggested by the means in Table 1 is one that will strike many as familiar: 
the university has several thousand students, roughly evenly split between the ‘arts’ and 
‘sciences’, and with about one in five students studying at postgraduate level. Mean costs 
are a little above £85 million. These vary considerably from institution to institution, 
depending upon the level of production of the various outputs. The precise nature of the 
mapping from outputs to costs is the subject matter of the next section of this paper. 
 
 
3. Methodology and Results 
 
Cost functions in economic theory represent an envelope or boundary which describes the 
lowest cost at which it is possible to produce a given vector of outputs. As it is an envelope 
that we wish to model, it is necessary to employ frontier methods of estimation rather than 
the more conventional best fit technology. 
 
The conventional approach to stochastic frontier estimation, based upon cross-section data, 
is due to Aigner et al. (1977). In this model, the equation  
 

iiii uvy ±++= xβ'α         (1) 
 
is estimated using maximum likelihood, where vi denotes normally distributed white noise 
error and ui is a second residual term that is intended to capture efficiency differences 
across observations. This could in principle follow any non-normal distribution, though the 
half-normal is a common assumption. 
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A particularly appealing feature of this approach is that, following the insight of Jondrow et 
al. (1982) it is possible to recover observation-specific estimates of the efficiency residual. 
This estimator is given by  
 

)1/(})](1/[)({]E[ 2
i λφσλε +−Φ−= iiii aaau      (2) 

 
where , 2/122 )( uv σσσ += vu σσλ /= ,  σλε /iia ±= , and φ(.)and Φ(.) are, respectively, the 
density and distribution of the standard normal. 
 
When using panel data, it is appropriate to modify (1) to 
 

tititiiiti uvy ±++= xβ'α         (3) 
 
where [ ]2,0~ vit Nv σ , itit Uu = , [ ]2,0~ uiit NU σ , and is independent of . Equation (2) 
is similarly modified, for the panel data case, to 

itv itu

 
)1/(})](1/[)({]E[ 2

it λφσλε +−Φ−= itititit aaau      (4) 
 
There are various ways in which one could implement this specification; for instance it 
would be possible to identify subgroups of the sample and estimate each parameter 
separately for each subgroup (Johnes et al. 2005). This is, in effect, the latent class 
estimator (Caudill, 2003). An alternative which we shall pursue in the present paper, is to 
model the βi as random parameters. Greene (2005) summarises the problem by defining the 
stochastic frontier as (3) above, the inefficiency distribution as a half-normal with mean µi 

= µ’izi and standard deviation σui = σuexp(θ’ihi), and the parameter heterogeneity is 
modelled as follows: 
 

iiii ββwΓqββ ,,,),(),( ααβααα +∆+=   ⎫ 

      ⎪ 
iii µwΓq∆µµ µµ ++=    ⎬     (5) 

      ⎪ 

iii θθθ wΓq∆θθ ++=    ⎭ 
 
Here the random variation appears in the random parameters vector wji (where i is the index 
of producers and j refers to either the constant, the slope parameter, or – in more general 
specifications of the model - the moments of the inefficiency distribution represented by µ 
and θ); this vector is assumed to have mean vector zero and, in the case where parameters 
are assumed to be normally distributed, the covariance matrix equals the identity matrix. 
 
The parameters of this model cannot be estimated by traditional maximum likelihood 
methods because the unconditional log likelihood includes within it a term containing an 
unclosed integral. The obvious approach to adopt in this situation is to simulate the 
likelihood using Monte Carlo methods. Convergence to the solution of the problem 
therefore entails selection of numerous random draws of parameters, and so this is 
inevitably a computationally intensive exercise. Speed of solution can be reduced by 
employing Halton (1960) sequences of quasi-random draws. Such sequences have 
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properties that resemble random series of numbers (and so can be used for simulation) but 
are in fact non-random and designed to facilitate rapid convergence in numerical 
integration problems. In the present case we have employed 100 Halton sequences; this is 
equivalent to the use of almost 1000 random simulations and is therefore in line with 
normal practice in Monte Carlo simulations. The simulated log likelihood function that 
must be maximised is 
 

log LS = −+−−±∑ ∑∑
= ==

}/)]/)('()//({[ln{1 22

1 11
vuirvuiritiriritvuirir
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π

σσαµ +−−++−−± xβ  (6) 

 
The model is estimated using Limdep. 
 
It is straightforward to observe that the traditional random effects model is a special case of 
the random parameters model; to be specific, the former is the case of the latter where only 
one parameter, namely the constant term, is allowed to vary across observations. In the 
results reported below, we report the random effects case as a point of comparison. 
 
The recent literature on costs in higher education institutions is firmly built on the 
foundations provided in the literature on multiproduct cost function. This literature, which 
developed from the investigation of contestable markets, has highlighted the difficulty of 
choosing a cost function that makes sense in a multiproduct context. Baumol et al. (1982) 
propose three possible functional forms: the CES, the quadratic, and the hybrid translog. 
Problems attach to the first of these (Johnes, 2004), and the last is demanding both in terms 
of data and its highly nonlinear specification. We therefore restrict our analysis in the 
present paper to the quadratic cost function. 
 
The results of four estimates of this cost function appear in Table 2. The first two columns 
report ‘best fit’ estimates. Model 1 is a standard random effects model where the constant is 
allowed to vary across institutions following a normal distribution. Model 2 is a random 
parameters model where both the constant and the coefficient on the full-time equivalent 
number of science undergraduates are allowed to vary, each following a normal 
distribution. Extensive experimentation, not reported here for reasons of space, has shown 
that, apart from the constant, it is only the coefficient on the linear term in science 
undergraduates that consistently exhibits significant variation across institutions. Models 3 
and 4 are frontier counterparts to models 1 and 2 respectively.  
 
Given the presence of quadratic and interaction terms in our preferred specification, the 
results in Table 2 are not straightforward to interpret. So we move quickly on to discuss 
some more intuitive results that emerge from our analysis. In Table 3, we report some 
measures of interest that are specific to each institution.4 The first column reports the 

                                                 
4 As noted at the bottom of Table 3, some 15 small and specialist institutions (see Table 2 footnotes) are 
excluded from this table because the frontier models predict that they will have negative costs. This is a result 
of the limited choice of legitimate functional forms in the multiproduct context. While we could conceivably 
eradicate the negative cost predictions by using, say, a Cobb-Douglas or a translog cost function, these are not 
legitimate functional forms to use where institutions are characteristically producers of multiple outputs. This, 
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random effects that are produced in model 1. These indicate systematic differences in costs 
across institutions that are not explained by differences in the explanatory variables. Such 
differences are due to unobserved heterogeneity – though as we shall argue later, this can 
be further decomposed. It is noticeable that the ancient universities (Oxford and 
Cambridge) have markedly higher costs than is the norm. Institutions located in or around 
London also tend to incur relatively high costs.5  
 
The second and third column show, respectively, the intercept shifts and the efficiencies 
that are estimated by the random effects frontier model. This model therefore allows us to 
decompose the unobserved heterogeneity into two components: the intercept shift is 
designed to capture differences in the cost technology facing institutions (such as the 
location of the institution), while the efficiency term reflects differences in institutions’ 
success in reaching their own cost frontier (maybe owing to differences in the quality of 
leadership). The measure of efficiency used here is the ratio of predicted costs to the sum of 
predicted costs and the value of the one-sided residual. Average efficiency is around 0.75, 
but this varies widely from 0.07 at Trinity and All Saints College to 0.97 at Cambridge. 
Thus the high costs at Oxford and Cambridge are readily seen to be the result of their 
idiosyncratic cost function, since, given this cost function, both are relatively efficient 
institutions with efficiency scores of above 0.9. Likewise, several of the London institutions 
(for example Imperial, Kings, University College London) face high costs but are deemed 
to be relatively efficient despite their high costs. Some others, such as City University, 
would appear to have high costs because of a mixture of an idiosyncratic cost function 
(which captures, amongst other things, high land prices in the capital) and a smaller 
efficiency score than some of their peers. Examination of the efficiency scores alone 
reveals a tendency for measured efficiency to be relatively low in smaller and more 
specialised institutions6. This is a feature noted also by Johnes et al. (2005).  
 
The final three columns decompose further the unobserved heterogeneity. In addition to the 
intercept shift and efficiency score, use of model 4 allows us to investigate also the extent 
to which the cost functions faced by different institutions vary in terms of how costs 
respond to numbers of science undergraduates. It is readily seen that the coefficient on 
science undergraduates is markedly higher at Imperial College, University College London, 
Oxford, and Warwick than elsewhere. The reasons for this are likely to be varied; 
unobserved differences in the precise subject mix within the broad science category (and in 
particular whether an institution has medical students) is likely to be particularly important. 
In these final three columns, the intercept shift and efficiency scores exhibit much the same 
behaviour as that observed in the earlier columns.  
 
It is worth emphasising a caveat concerning the interpretation of the efficiency scores 
derived from these models (3 and 4), which are calculated on the basis of institution-
specific parameters (the constant for model 3, and the constant and coefficient on science 
undergraduates for model 4). Allowing some parameters to vary by institution brings the 
technique closer to DEA, and a well-known drawback of DEA is that units can be seen to 
be efficient simply because they are different from others in the data set. Thus the apparent 
cost efficiency of Oxford and Cambridge, both high-cost institutions, is questionable. It 
                                                                                                                                                     
in turn, is because any institution producing zero quantities of some outputs (and there are such institutions) 
could not be modelled by a Cobb-Douglas or translog function because the log of zero is indeterminate. 
5 Birkbeck College, which specialises in part-time provision, is unusual in this respect.  
6 Pearson’s correlation coefficient between the natural logarithm of efficiency derived from model 4 and the 
natural logarithm of the total number of all students is 0.633. 
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would follow that some of the seemingly less efficient institutions could potentially become 
more efficient by attempting to emulate Oxford and Cambridge, yet encouraging 
institutions to become more like Oxford and Cambridge is not a practical or desirable 
policy for achieving cost efficiency either in the individual institutions or in the sector as a 
whole.  
 
Much of the interest in studies of the cost structures of multiproduct institutions comes 
from statistics on average incremental costs associated with each output, and from statistics 
on economies of scale and scope. Standard measures of these were defined by Baumol et al. 
(1982) and have been used in numerous studies – including Cohn et al. (1989), Johnes 
(1997) and Johnes et al. (2005) – since. These now being standard and well understood 
definitions, we do not define them here, but proceed to report the various statistics that 
emerge from analysis of the two random parameter models – model 2 which follows the 
‘best fit’ approach, and model 4 which follows the frontier approach.  
 
Average incremental costs are shown in Table 4. These are reported, for each of the 
models, for a representative institution (namely one producing the mean level of each of the 
outputs), and also for institutions that produce 80 per cent and 120 per cent respectively of 
the mean of each output type.7 The results indicate that science undergraduates cost 
between twice and three times as much to produce as do non-science undergraduates, and 
that postgraduate education is markedly more costly than undergraduate education. It is 
noticeable, however, that the frontier model estimates the average incremental costs 
associated with postgraduate education to be markedly lower than is the case with the ‘best 
fit’ model.8
 
The results shown in Table 5 indicate that product-specific returns to scale are exhausted 
for undergraduates in institutions close to the representative size. Economies of scale 
remain unexhausted in the context of postgraduate education and research, however. These 
results are robust with respect to choice of estimation method. They accord with the results 
presented in Johnes et al. (2005). Johnes (1997), using data for an earlier period and for a 
smaller sample of institutions, finds that product-specific economies of scale are exhausted 
for science undergraduates, but not for arts undergraduates.   
 
Findings on ray returns to scale and on returns to scope are sensitive to the choice of 
estimation methodology. Using a ‘best fit’ method, ray economies of scale appear to be 
unexhausted, this being in large measure due to the fact that returns to scope are positive. 
However, using a frontier method, these results are reversed. This finding has clear 
implications for the further expansion of higher education in the UK. If current efficiency 
levels are taken as given, any further expansion of higher education should (in order to 
minimise global costs) be effected within the existing institutions. If, however, efficiency 
could be increased, overheads would fall and hence the opening of new institutions would 
become a viable option.  
 

                                                 
7 The results in Tables 4 and 5 are based on the average value of the coefficients for the random parameters. 
8 One interpretation of this is that the ‘best fit’ model refers to actual expenditures rather than to the costs that 
need to be spent by an efficient institution. Bowen (1980) has argued that ‘each institution raises all the 
money it can’ and ‘each institution spends all it raises’. If an institution can raise funds by hiking tuition for 
one output type – say postgraduates – then estimation of the equation by means of a ‘best fit’ method will tend 
to indicate that more postgraduates imply more expenditure. The frontier model does not suffer from this 
problem, since any expenditure that is above the cost frontier is attributed to inefficiency. 
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4. Conclusions 
 
Earlier studies which have estimated cost functions for institutions of higher education have 
failed to recognise that, owing to unobserved heterogeneity, each institution likely faces a 
different cost function. In this paper, we use methods that have recently become available 
to estimate frontier cost functions for higher education institutions within the context of a 
random parameter model. This brings the analysis somewhat closer to the spirit of non-
parametric techniques such as data envelopment analysis (and therefore has some of its 
drawbacks, such as its sensitivity to the presence of outliers), and allows questions to be 
answered about the distinction between inefficiency and idiosyncratic cost technologies. By 
allowing parameters to vary across institutions, cost functions for institutions that are 
obviously quite different from one another can be estimated within a single, unified 
framework, obviating the need for separate equations to be estimated for exogenously 
determined groups of institutions. 
 
Our findings on returns to scale and scope, and on average incremental costs have much in 
common with the received literature. Findings that are new primarily concern the 
decomposition of cost differentials into components due to differences in cost technology, 
on the one hand, and efficiency, on the other. So, for example, while Izadi et al. (2002) 
comment on the London Business School (which in that study had a low measured 
efficiency score) as an idiosyncratic case, it is clear from the present analysis that the higher 
than expected costs of that institution are due in part to an unusual cost technology, and in 
part to efficiency issues.  
 
Simple frontier models exist that simultaneously determine efficiency scores and explain 
them by reference to a vector of (environmental) variables. Such models have not yet been 
extended so that they can be used in a random parameter context. That would be an obvious 
development of the present work that must be left to the future. 
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Table 1 Descriptive Statistics 
 

Variable Mean Standard deviation 
costs (£x10-7, 2003 prices) 8.593 8.990 

science undergraduates (‘000) 2.760 2.519 
non-science undergraduates (‘000) 3.388 2.615 

postgraduates (‘000) 1.733 1.447 
research income (£m, 2003 prices) 22.125 43.431 
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Table 2 Regression Results 
 
Variable Model 1: RE 

Gaussian 
Model 2: RPM 

Gaussian 
Model 3: RE 

Frontier 
Model 4: RPM 

Frontier 
     
constant 2.106 1.083 -0.328 -0.328 
 (53.84)1 (27.72) (4.41) (4.44) 
     
ug sci 0.372 0.925 0.898 0.898 
 (9.25) (22.80) (12.67) (12.90) 
     
ug non-sci 0.280 0.014 0.211 0.211 
 (9.34) (0.45) (4.06) (4.05) 
     
pg 1.125 1.538 1.186 1.186 
 (15.22) (20.29) (8.83) (8.85) 
     
research 0.088 0.083 0.089 0.089 
 (28.11) (25.96) (16.40) (16.46) 
     
(ug sci)2 0.075 0.030 0.005 0.005 
 (8.58) (3.44) (0.31) (0.31) 
     
(ug non-sci)2 -0.014 0.004 0.023 0.023 
 (2.33) (0.60) (2.18) (2.31) 
     
pg2 -0.107 -0.161 -0.133 -0.133 
 (4.14) (6.03) (2.53) (2.55) 
     
research2 -0.0002 -0.0002 -0.0002 0.0004 
 (15.35) (14.96) (7.46) (13.96) 
     
ugsci*ugnonsci -0.017 -0.029 -0.004 -0.004 
 (1.46) (2.54) (0.18) (0.18) 
     
ugsci*pg -0.281 -0.271 -0.165 -0.165 
 (13.54) (13.14) (4.65) (4.82) 
     
ugsci*research 0.006 0.007 0.002 0.002 
 (10.34) (11.56) (2.37) (2.30) 
     
ugnonsci*pg 0.210 0.214 0.034 0.034 
 (12.14) (12.13) (0.99) (1.02) 
     
ugnonsci*res -0.003 -0.002 -0.002 -0.002 
 (5.82) (4.94) (1.82) (1.95) 
     
pg*research 0.019 0.018 0.021 0.021 
 (16.46) (15.14) (8.13) (8.56) 
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Random 
parameters2: 

    

     
constant 1.867 1.473 6.700 6.700 
 (81.81) (80.45) (39.33) (40.22) 
     
ug science  0.030  1.900 
  (6.24)  (39.55) 
     
σ 0.475 0.479 1.900 1.900 
 (50.47) (50.17) (31.93) (31.74) 
     
λ   6.700 6.700 
   (7.48) (7.57) 
     
log likelihood -457.177 -432.66 -673.58 -710.58 
     
     
Notes: (1) t statistics in parentheses; (2) coefficients reported here are estimates of standard 
deviation of normal distribution of random parameters. 
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Table 3 Efficiencies, Intercept Shifts and Slope Shifts 
 
Institution intercept 

shift: 
model 1 

intercept 
shift: 

model 3 

efficiency: 
model 3 

intercept 
shift: 

model 4 

slope 
shift: 

model 4 

efficiency: 
model 4 

Anglia Polytechnic 
University                          

3.13 1.33 0.861 0.47 1.13 0.850 

Aston University               1.20 -0.97 0.749 -0.37 0.70 0.745 
Bath Spa University 
College                              

0.02 -0.86 0.561 -0.89 0.84 0.534 

University of Bath             1.75 -0.50 0.852 -0.43 0.95 0.863 
Birkbeck College              0.02 -0.83 0.782 -0.73 0.72 0.773 
University of 
Birmingham                      

0.69 0.36 0.946 -0.29 1.21 0.957 

Bolton Institute of 
Higher Education              

0.71 -1.12 0.601 -0.96 0.80 0.590 

Bournemouth University   1.46 -0.53 0.767 0.14 0.64 0.783 
University of Bradford      2.13 -0.35 0.871 -0.36 0.92 0.875 
University of Brighton      1.91 -0.41 0.787 -0.86 1.03 0.787 
University of Bristol         1.80 -0.18 0.869 -3.67 1.74 0.899 
Brunel University              0.41 -1.62 0.845 -1.78 0.94 0.850 
Buckinghamshire 
Chilterns University 
College                   

2.11 0.54 0.750 0.31 1.10 0.750 

University of 
Cambridge                         

4.17 3.64 0.971 6.56 1.93 0.984 

Institute of Cancer 
Research                            

1.72 0.43 0.742 0.66 0.92 0.739 

Canterbury Christ 
Church University 
College                    

0.48 -0.59 0.708 -0.70 0.95 0.698 

University of Central 
England in Birmingham    

2.93 1.04 0.865 -0.45 1.31 0.879 

University of Central 
Lancashire                         

3.20 0.28 0.929 1.68 0.58 0.895 

Chester College of HE      1.04 -0.57 0.665 -0.59 0.84 0.633 
University College 
Chichester                         

-0.41 -1.50 0.464 -1.35 0.61 0.432 

City University                  4.33 1.92 0.795 -0.79 1.77 0.834 
Coventry University          2.18 -0.09 0.838 0.26 0.84 0.840 
Cranfield University          4.48 2.56 0.769 3.06 0.75 0.784 
De Montfort University     2.21 0.23 0.882 0.25 0.91 0.885 
University of Derby          1.97 -0.35 0.821 -1.25 1.17 0.823 
University of East 
London                              

1.72 -0.12 0.842 -0.68 1.04 0.836 

Edge Hill College of 
Higher Education              

0.62 -0.68 0.681 -0.63 0.88 0.688 

University of Essex           0.50 -0.86 0.839 -0.79 0.89 0.837 
University of 
Gloucestershire                 

0.80 -1.04 0.643 -1.07 0.90 0.634 

Goldsmiths College           0.18 -0.75 0.778 -0.73 0.89 0.779 
University of Greenwich   3.82 1.98 0.877 -0.22 1.42 0.878 
Harper Adams 
University College            

0.79 -0.69 0.191 -0.68 0.85 0.173 
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University of 
Hertfordshire                     

3.49 1.21 0.888 0.45 1.03 0.885 

University of 
Huddersfield                      

2.10 0.04 0.851 -0.07 0.92 0.846 

University of Hull             2.27 0.40 0.883 0.48 0.87 0.879 
Imperial College of 
Science, Technology & 
Medicine             

4.38 2.86 0.903 0.42 2.47 0.928 

Institute of Education        0.14 -1.08 0.710 -1.05 0.82 0.708 
University of Kent at 
Canterbury                         

1.11 -0.52 0.860 -0.64 0.94 0.851 

Kent Institute of Art & 
Design                               

0.78 -0.28 0.240 -0.30 0.93 0.235 

King Alfred's College, 
Winchester                        

0.26 -0.81 0.421 -0.83 0.74 0.372 

King's College London     5.99 4.63 0.958 0.71 1.91 0.978 
Kingston University          2.41 0.17 0.901 0.55 0.80 0.880 
University of Lancaster     0.80 -0.59 0.895 -0.40 0.85 0.891 
Leeds Metropolitan 
University                          

3.55 0.92 0.877 -0.77 1.29 0.896 

University of Leeds           0.50 0.53 0.921 0.12 1.13 0.928 
University of Leicester      0.41 -1.09 0.827 -0.59 0.88 0.831 
University of Lincoln        1.20 -0.58 0.887 -0.05 0.60 0.873 
Liverpool Hope 
University College            

0.30 -0.76 0.744 -0.73 0.53 0.589 

Liverpool John Moores 
University                          

2.60 0.35 0.905 0.72 0.83 0.899 

University of Liverpool     1.11 -0.46 0.897 -3.58 1.46 0.898 
London Business School   3.78 2.62 0.790 2.62 0.99 0.787 
University of London 
(Institutes and activities)   

6.36 5.66 0.765 5.70 0.84 0.770 

London Metropolitan 
University                          

2.02 0.13 0.854 -0.10 0.95 0.854 

London South Bank 
University                         

3.69 1.37 0.916 0.95 0.98 0.911 

London School of 
Economics and Political 
Science               

0.60 0.99 0.893 1.09 0.82 0.891 

London School of 
Hygiene & Tropical 
Medicine                   

0.96 -0.25 0.730 -0.06 0.84 0.726 

Loughborough 
University                          

0.52 -1.53 0.859 -1.20 0.89 0.862 

University of Luton           1.60 0.01 0.785 0.12 0.86 0.796 
University of 
Manchester                        

2.39 2.73 0.966 0.29 1.40 0.945 

University of 
Manchester Institute of 
Science & Technology 

3.12 0.51 0.818 1.69 0.66 0.826 

Manchester 
Metropolitan University    

0.29 -1.33 0.947 1.01 0.54 0.932 

Middlesex University        3.84 2.13 0.860 -0.09 1.45 0.855 
University of 
Newcastle-upon-Tyne       

3.62 1.87 0.915 -1.54 1.61 0.916 

University College 
Northampton                     

1.10 -0.92 0.729 -0.78 0.80 0.714 

University of 
Northumbria at 

2.82 0.86 0.902 0.06 1.05 0.898 
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Newcastle                     
Nottingham Trent 
University                          

1.47 -0.19 0.944 1.65 0.55 0.931 

University of 
Nottingham                       

2.73 1.69 0.897 0.26 1.28 0.914 

Oxford Brookes 
University                          

2.36 0.46 0.868 1.52 0.67 0.880 

University of Oxford         3.78 2.92 0.932 5.44 2.12 0.935 
University of 
Portsmouth                        

1.26 -0.82 0.878 1.01 0.58 0.875 

Queen Mary and 
Westfield College              

3.83 1.79 0.891 -0.10 1.47 0.913 

University of Reading       0.97 -0.41 0.869 -0.69 1.10 0.876 
University of Surrey, 
Roehampton                      

0.30 -1.13 0.739 -1.04 0.86 0.751 

Royal Academy of 
Music                                 

0.67 -0.30 0.127 -0.32 0.95 0.116 

Royal College of Art         0.78 -0.21 0.513 -0.22 0.87 0.510 
Royal College of Music    0.86 -0.25 0.118 -0.26 0.84 0.108 
Royal Holloway and 
Bedford New College       

0.80 -0.58 0.751 -0.31 0.66 0.740 

Royal Veterinary 
College                              

1.55 0.22 0.591 0.15 1.04 0.603 

St George's Hospital 
Medical School                 

2.73 1.07 0.825 0.96 1.05 0.834 

College of St Mark and 
St John                               

-0.08 -1.18 0.413 -1.23 0.60 0.268 

St Martin's College            0.32 -0.89 0.624 -0.97 0.99 0.635 
St Mary's College              0.28 -0.89 0.337 -0.84 0.56 0.204 
University of Salford         4.04 1.69 0.901 2.88 0.66 0.893 
School of Oriental and 
African Studies                  

0.76 0.02 0.690 0.03 0.98 0.690 

School of Pharmacy          0.27 -1.08 0.170 -1.03 0.90 0.205 
Sheffield Hallam 
University                 

1.18 -0.73 0.881 -2.43 1.16 0.898 

University of Sheffield      0.40 -0.60 0.877 0.23 0.99 0.885 
Southampton Institute       2.28 -0.01 0.848 0.84 0.37 0.825 
University of 
Southampton                     

2.29 0.75 0.903 1.53 1.02 0.902 

Staffordshire University    1.67 -0.80 0.817 -0.12 0.73 0.817 
University of 
Sunderland                        

2.51 0.40 0.838 0.29 0.90 0.825 

Surrey Institute of Art 
and Design, University 
College     

0.99 -0.12 0.423 -0.12 0.92 0.422 

University of Surrey          4.56 2.27 0.813 1.73 1.14 0.810 
University of Sussex         0.63 -1.16 0.794 -0.08 0.58 0.801 
University of Teesside      2.41 0.05 0.772 -0.42 1.00 0.762 
Thames Valley 
University                          

3.13 1.72 0.794 1.67 0.90 0.787 

Trinity And All Saints 
College                              

0.14 -1.01 0.066 -1.05 0.99 0.064 

University College 
London                              

4.65 4.22 0.961 3.14 2.41 0.970 

University of Warwick      3.87 2.12 0.837 -2.01 2.08 0.861 
University of West of 
England, Bristol                

1.86 -0.41 0.838 0.86 0.71 0.839 
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University of 
Westminster                      

2.67 0.94 0.853 -0.32 1.16 0.857 

University of 
Wolverhampton                 

2.97 0.53 0.919 1.29 0.67 0.899 

University College 
Worcester                          

0.49 -0.64 0.547 -0.63 0.86 0.541 

Writtle College                  1.04 -0.27 0.272 -0.33 0.98 0.269 
York St John College        0.43 -0.91 0.651 -0.65 0.34 0.467 
University of York            1.63 -0.27 0.854 0.32 0.80 0.855 
Notes: The efficiency measures vary a little from year to year; those reported in this table refer to 2002-03. 
Estimates are not reported here for 15 small and specialist institutions for which the predicted value of 
deflated costs in the frontier equations is negative. These are: Bishop Grosseteste College; Central School of 
Speech and Drama; Cumbria Institute of Arts; Dartington College of Arts; Falmouth College of Arts; 
Homerton College; Institute of Advanced Nursing; Newman College of Higher Education; Northern School 
of Contemporary Dance; Norwich School of Art and Design; Ravensbourne College of Design and 
Communication; Rose Bruford College; Royal Northern College of Music; Trinity College of Music; and 
Wimbledon School of Art. 
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Table 4 Average Incremental Costs 
 
 Model 2 Model 4 
 at 100% 

mean 
output 

at 80% 
mean 
output 

at 120% 
mean 
output 

at 100% 
mean 
output 

at 80% 
mean 
output 

at 120% 
mean 
output 

       
undergraduate science 5516 6262 4770 6452 6958 5946 

undergraduate non-science 2869 2323 3416 3126 2923 3329 
postgraduate 16215 16049 16382 10527 1141 10261 

 
 
 
 
 
 
 
Table 5 Economies of Scale and Scope 
 
 Model 2 Model 4 

 at 
100% 
mean 
output 

at 80% 
mean 
output 

at 
120% 
mean 
output 

at 
100% 
mean 
output 

at 80% 
mean 
output 

at 
120% 
mean 
output 

       
Product-specific returns to scale:       
undergraduate science 0.87 0.90 0.82 0.98 0.98 0.97 
undergraduate non-science 0.96 0.96 0.96 0.79 0.81 0.77 
postgraduate 1.22 1.17 1.28 1.30 1.22 1.40 
research 1.04 1.04 1.05 1.08 1.07 1.09 
   
Ray returns to scale 1.10 1.15 1.07 0.97 0.96 0.98 
   
Returns to scope 0.30 0.40 0.23 -0.17 -0.20 -0.15 
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