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Abstract

We study a model of political competition between two candidates with two
orthogonal issues, where candidates are office motivated and committed to a
particular position in one of the dimensions, while having the freedom to select
(credibly) any position on the other dimension. We analyse two settings: a
homogeneous one, where both candidates are committed to the same dimension
and a heterogeneous one, where each candidate is committed to a different
dimension. We characterise and give necessary and sufficient conditions for
existence of convergent and divergent Nash equilibria for distributions with a
non-empty and an empty core. We identify a special point in the ideology
space which we call a strict median, existence of which is strictly related to
existence of divergent Nash equilibria. A central conclusion of our analysis is
that for divergent equilibria, strong extremism (or differentiation) seems to be
an important equilibrium feature.

Key words: Spatial Voting, Two Issues, Uni-Dimensional Commitment, Strict
Median, Extremism
JEL: D72, D78



1 Introduction

The seminal Hotelling-Downs model (Hotelling (1929) and Downs (1957)) of
electoral competition and its well known result of policy convergence to the me-
dian voter have remained central to the literature on formal political economics.
The crucial assumption of this model is that candidates care only about win-
ning the elections and are able to commit to any pre-election announcement of
policies (c.f. Duggan (2005)). This assumption leads to problems with existence
of Nash equilibria even with two competing politicians in multi-dimensional ide-
ology spaces. A multi-dimensional generalization of the median voter theorem
states that a Nash equilibrium choice of policies with two competing candidates
must be the point which is weakly majority preferred by all voters (a core point)
(Duggan (2005)). The formal requirements for the existence of such a point in
multi-dimensional ideology spaces is so restrictive (Plott (1967)) that for almost
all specifications of voter preferences, the core point does not exist.1

In this paper we study the Hotelling-Downs setting with two competing can-
didates on a two-dimensional ideology space where the set of policies each candi-
date can propose is restricted by his commitment to one of the issues/dimensions.
We take the stand that while a candidate’s pre-electoral position may have more
than one orthogonal issues, a candidate may not be able to make credible com-
mitments on all of these issues due to history or his own identity. For example,
while L. K. Advani (the right-wing BJP leader) of India can credibly commit to
a large extent to any position on issues such as budget deficits, voters in India
will never believe that he could take an anti-Hindu stand if voted to power.
Similarly, it would be hard for Barack Obama to credibly commit to any policy
that can directly hurt African Americans. Also, a candidate may represent a
particular political party, which by history has adopted a certain stance towards
some of the issues which cannot be relaxed by the candidate (that is the current
leader). Similar phenomenon may occur when new issues are introduced dur-
ing the political campaign (e.g. see Hinich and Munger (2008)). Appearance
of new issue might give a candidate a new degree of freedom in selecting his
political position, while he has to ‘stick’ his position towards the older ones. In
other words, by virtue of popularity, a candidate (or a political party) is at times
identified by ideologies in certain issues on which they establish irrefutable repu-
tation, while such a label does not appear for them in other issues. We also take
the stand that in a mature democracy with well-established leaders and parties,
it is almost inevitable that each party or leader faces such reputations. Our
framework is a simplification of this stand and results in each candidate having
to choose a policy from a unidimensional ideology space to win the election
which is otherwise contested in a 2-dimensional ideology space. Additionally we
allow each candidate to stay out of the elections, if winning is impossible for
him. We restrict our attention to pure strategies only and we are interested in
the existence of Nash equilibria where both candidates contest. Our focus is to
address this in situations where the core is empty, and where in equilibrium the
two parties take very different stands.

1Duggan and Jackson (2005) attempt to overcome this problem by studying a model with
mixed strategies of candidates and assuming that candidates are unable to predict each others
policy positions. It is shown that if indifferent voters are allowed to randomize with any
probability ability between zero and one (instead of voting for each candidate with equal
probability), then it is possible to have existence of mixed strategy Nash equilibria.
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The idea of restricting ideology spaces of candidates is new. A similar idea
is studied very recently by Beeler Asay (2008) where ‘feasible’ policies of can-
didates are restricted by linear constraints in a setting with two-dimensional
ideology space, a finite set of voters and two office-motivated candidates. The
central objective of that study is this: given that an incumbent faces competition
from a potential entrant, what policy must he choose to minimize the probabil-
ity of his opponent’s victory. New solution concepts called a constrained strong
point and a constrained core are developed to add to the stream of literature in
political competition where new solution concepts are sought to overcome the
problem of emptiness of the core (c.f. Ferejohn et al. (1984), Owen and Shapley
(1989), Wuffle et al. (1989)). Since our focus is on sustaining equilibria where
both parties contest and there is no gain from votes unless it leads to victory
with positive probability, the notions of the strong point or the constrained
strong point are not helpful. We identify another ‘special’ point in the ideol-
ogy space that has strict relation (that is either they both exist or they both
do not) with the notion of the constrained core and in high dimensions plays
the role of a ‘median voter’. We call this point the strict median and we show
that this point is the projection of the constrained cores (which we show, if it
exists, is always unique with a continuum of voters) of each candidate in their
respective feasible strategy sets. Our analysis suggests that in electoral games
with two competing candidates and with restricted strategies, either the core
is non-empty in which case the core coincides with the strict median and an
equilibrium with both candidates contesting exists, or that the core is empty
while the strict median may still exist and the existence of the strict median
is necessary for existence of equilibrium in pure strategies where both candi-
dates contest. The more interesting scenario for us is where the two contesting
parties announce different platforms. We show that in every such equilibrium,
the parties must be far apart from each other. In particular when they share a
common committed issue, the parties must hold strongly extremist and opposite
positions in that issue while their announced policy converges in the other issue
in which they are free to choose. In the case where the committed issues of
the two parties are different, their overall positions must remain significantly
distant from each other.

The rest of the paper is structured as follow. We introduce the model for-
mally in Section 2. Then we provide some preliminary notions and results in
Section 3 and the main results in Section 4 and comment on one-party equilib-
rium. We discuss our findings and the notion of the strict median in Section 5
and conclude in Section 6.

2 The Model

Two candidates 1 and 2 compete for office in an election governed by the ma-
jority rule. There is a continuum of voters, denoted by the set C and each voter
in C has a single-peaked preference over the set of policy positions, which is
assumed to be the real plane R2 (that is each policy consists of two indepen-
dent (orthogonal) issues, the set of issues is denoted by I = {1, 2}). We shall
use δ to denote the Euclidean distance on R2. The ideal policies of the voters
are distributed on R2 with a distribution function given by density function f
(throughout the text we will identify the respective distribution with f as well).
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We assume that f is non-atomic, that is the support X of f is such that there
exists a connected open set Z ⊆ X such that X ⊆ Z̄, where Z̄ denotes the
closure of Z.2

Each of the candidates d ∈ {1, 2} is committed to a particular value of only
one of the issues, while he has freedom of credible choice of his political position
over the remaining one. The committed issue of candidate d is denoted by cd ∈ I
and the free issue is denoted by nd. The unique ideal value of the committed
issue of candidate d is denoted by vd. We will also use a (instead of v1) to denote
this ideal value of candidate 1 and use b (instead of v2) for candidate 2. Points
a and b are common knowledge amongst all players so that these are the only
credible pre-electoral announcements for the committed issues. However each
candidate d ∈ {1, 2} is free to choose his policy from his feasible set of policies
Ld = {x̄ ∈ R2 : x̄ ↓ cd = vd}, which is a line in R2. Thus, each candidate is
committed to one of the issues and to announce his proposed policy x̄d ∈ R2,
candidate d has to choose a value of the issue nd.

Elections are conducted as follows: each candidate makes a decision (simul-
taneously and independently) of whether (or not) to contest the elections and,
if he decides to contest, what policy to propose. These announcements become
common knowledge amongst voters and all voters cast votes, voting for their
most preferred policies (in case of a tie, they vote for each candidate with equal
probability). A candidate who receives the maximal mass of support is selected
as the winner of the elections (while a tie is broken by an equiprobable draw).
The winner implements the policy he announced. We assume the following pref-
erences of candidates: they prefer (a) not contesting to losing ; (b) a tie to not
contesting; (c) winning to not contesting; (d) to be the unique winner to any
other outcome; and (e) a tie to losing.

In summary, the strategic game Γc1,c2
a,b is studied in which the set of candi-

dates is {1, 2}, the committed issue of candidate 1 is c1 and his preferred value
of this issue is a and the committed issue of candidate 2 is c2 and his preferred
value of this issue is b. For each candidate d ∈ {1, 2} the set of pure strategies
is {N} ∪ R, where N stays for staying out of the elections, and the preferences
are as described above. In what follows we shall focus our attention on is-
sues concerning existence and characteristics of pure strategy Nash equilibria of
Γc1,c2
a,b where both candidates contest. We call such equilibria Full-Participation

Equilibria.

3 Preliminaries

Before presenting the results we need to define some notions. Given a measur-
able set X ⊆ R2 we use

µ(X) =
∫
X

f(x̄)dx̄

to denote the mass of voters with ideal policies in X.
Any line l ⊆ R2 gives a rise to a distribution fl, which will be called a

distribution f projected on l, where

fl(z̄) =
∫
l⊥(z̄)

f(x̄)dx̄,

2We see this as a natural generalization of the notion of non-atomicity of unidimensional
distributions.
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defined for z̄ ∈ l, where l⊥(z̄) denotes the line perpendicular to l intersecting it
at z̄. Notice that if f is non-atomic, then fl is non-atomic as well.

A line m ⊆ R2 such that the masses of both half planes defined by the line
are equal is called a median line. The following fact is crucial for our results
[see appendix for a proof].

Fact 1. Let f be a non-atomic distribution. Then for any vector v ∈ R2 there
exists a unique median line mf

v perpendicular to v.

Given an issue i ∈ I we will use ei to denote the unit vector associated with
the respective dimension of the issue i. Then mei denotes median line associated
with vector ei. We will also use a shorter notation mi to denote the median line
mei .

Given two policies {x̄1, x̄2} ⊆ R2, let B(x̄1, x̄2) = {x̄ ∈ R : δ(x̄1, x̄) =
δ(x̄2, x̄)} be the bisector of x̄1 and x̄2 (c.f. Aurenhammer and Klein (2000)),
that is a line perpendicular to the interval connecting policies x̄1 and x̄2, go-
ing through its middle. The bisector of x̄1 and x̄2 separates the half space
D(x̄1, x̄2) = {x̄ ∈ R2 : d(x̄1, x̄) < d(x̄2, x̄)} containing policies that are closer to
x̄1 from the half space D(x̄2, x̄1) containing the policies that are closer to x̄2.
Then D(x̄1, x̄2) contains ideal points of voters strictly preferring x̄1 to x̄2.

Similarly, we define a bisector line of two lines l1 ⊆ R2 and l2 ⊆ R2 to be
a line consisting of points equidistant from both lines.3 Two lines may have
one (if their intersection is empty) or two (otherwise) bisector lines. The set of
bisector lines of lines l1 and l2 is denoted by B(l1, l2).

We say that x̄1 is weakly majority preferred to x̄2, denoted by x̄1M̄x̄2, if
µ(D(x̄1, x̄2)) ≥ µ(D(x̄2, x̄1)), that is the mass of support of x̄1 is not smaller
than the mass of support of x̄2. The set of policies Cf ⊆ R2 that are weakly
majority-preferred to all other policies is called the core policies or simply the
core. The relation of strict majority preference is defined as usual and will be
denoted by M .

Given a distribution f we will use Mf = {mf
v : v ∈ R} to denote the set

of all median lines associated with f . The following fact is well known, but for
completeness we provide its proof in the appendix.

Fact 2. Given a non-atomic distribution function f , the core of Cf 6= ∅ if and
only if there exists c̄f ∈ R2 such that for any {m1,m2} ∈ Mf , if m1 6= m2,
then the intersection point of them is c̄f and Cf = {c̄f}.

That is the core Cf , if it exists, must consist of (the unique) intersection
point c̄f of all median lines. We call c̄f the core point and every voter whose
ideal position is c̄f is called a core voter. Facts 1 and 2 together clearly indicate
that non-emptiness of the core is hard to achieve in higher dimensions while its
existence is guaranteed in one-dimension (the median).

4 The Results

In our analysis we will be interested in Nash equilibria as strategy profiles in R2,
that is in Nash equilibria in which both candidates contest. We call such equilib-
ria full participation Nash equilibria. Among full participation Nash equilibria

3By ‘distance’ between a point and a line we mean the standard notion of the shortest
distance between the two.
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we will also distinguish between two kinds: those where the policies proposed
by the candidates are the same, which we call Convergent Full Participation
Equilibria (CFPE), and those where the policies proposed by the candidates
are different, which we call Divergent Full Participation Equilibria (DFPE).
We are mainly interested in the existence and characteristics of a DFPE and
particularly so when the core is empty.

In the subsections to follow we study conditions for existence and proper-
ties of a CFPE and a DFPE, analysing two cases separately: one where both
candidates are committed to the same issue (Homogeneous Commitment) and
the other where each candidate is committed to a different issue (Heterogeneous
Commitment).

4.1 Convergent Full Participation Equilibria

The analysis of a CFPE is quite straightforward and we first state our results
in this case.

4.1.1 Homogeneous Commitment

In the case of homogeneous commitment, where the committed issues of both
candidates are the same it either holds that L1 ∩L2 = ∅, that is feasible sets of
policies of both candidates are disjoint, which is the case when a 6= b, or it holds
that L1 = L2, that is both candidates have the same feasible set of policies,
which is the case when a = b. The necessary condition for the existence of a
CFPE is that a = b in which case we have the classical Hotelling-Downsian
competition in one dimension and the following well known result holds (thus
left without a proof).

Theorem 1. Consider a game Γi,i
a,b. Then a CFPE of Γi,i

a,b exists if and only if
a = b. Moreover if (x1, x2) is a CFPE of Γi,i

a,a, then x1 = x2 = m, where m is
the median of the distribution f projected on L = L1 = L2.

4.1.2 Heterogeneous Commitment

In the case of heterogeneous commitment it always holds that L1 ∩L2 6= ∅ and
the intersection of the feasible sets of policies of both candidates contains exactly
one policy. It turns out that a CFPE exists in this case if and only if L1 and
L2 are median lines. We show that the policy proposed by the two candidates
in a CFPE must be this unique intersection point of the two feasible sets of
policies. The central message of the following theorem is that such equilibrium
exists if and only if the feasible sets of strategies of the two candidates are the
two vertical and horizontal median lines and in any such equilibrium, if a is the
value of the committed issue for candidate 1, then it is also the announced value
of the free issue for candidate 2 and vice versa (with respect to b).

Theorem 2. Consider a game Γi,j
a,b with i 6= j. Then a CFPE of Γi,j

a,b exists if
and only if L1 = mi and L2 = mj. Moreover, if this condition is satisfied then
a strategy profile (y1, x2) is a Nash equilibrium if and only if y1 = b and x2 = a.

Proof. If a strategy profile (y1, x2) is a CFPE then it must be that L1 ∩ L2 =
{(y1, x2)} and so it must be that y1 = b and x2 = a.
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Figure 1: Bisector lines from B(x̄2, L1) and the tangent parabola.

For the left to right implication of the existence part of the theorem we will
show that if (y1, x2) is a CFPE, then it must be that (y1, x2) ∈ mi∩mj. Assume
the opposite. Then either (y1, x2) /∈ mi or (y1, x2) /∈ mj. Suppose that the first
case holds. Let x̄ ∈ L1 ∩ mj. Then x̄M(y1, x2) and so candidate 1 can win
outright by proposing x̄ ↓ j instead of y1. Analogous argument can be used for
the case where (y1, x2) /∈ mj. Thus if (y1, x2) is a Nash equilibrium, then it
must be that (y1, x2) ∈ mi ∩mj and so it must be that L1 = mi and L2 = mj.

For the right to left implication of the existence and characterisation part of
the theorem assume that L1 = mi and L2 = mj and consider a strategy profile
(y1, x2) such that y1 = b and x2 = a. Let x̄ ∈ L1∩L2 be the policy proposed by
both candidates under this strategy profile. Then for any x̄′ ∈ L1 it holds that
x̄Mx̄′, so it is not profitable for candidate 1 to deviate to any other position.
Similarly, it is not profitable for candidate 2 to deviate to any other position as
well. Hence (y1, x2) is a Nash equilibrium. ut

Thus we have provided the necessary and sufficient conditions for existence
of a CFPE together with full characterisation of such equilibria in both homo-
geneous and heterogeneous commitments.

4.2 Divergent Full Participation Equilibria

Before we study conditions for existence and characteristics of a DFPE in both
homogeneous and heterogeneous commitment settings, let us investigate the
necessary and sufficient condition for the existence of a winning strategy for one
of the candidates given an arbitrary strategy of its competitor.

Let x̄2 be the policy proposed by candidate 2 and assume that x̄2 /∈ L1, that
is the policy x̄2 is not feasible for candidate 1. Consider the set B(x̄2, L1) =
{B(x̄1, x̄2) : x̄1 ∈ L1} of bisector lines between x̄2 and all feasible policies of
candidate 1. Notice that all the lines in B(x̄2, L1) are tangent to the parabola
with focus x̄2 and directrix L1 (see Figure 1).

Let P(x̄2, L1) denote the subset of the plane separated by that parabola
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together with the parabola and containing policy x̄2. Notice that the interior
of region P(x̄2, L1) could be interpreted as the set of ideal positions of the elec-
torate which is inaccessible to candidate 1 (that is, loyal voters of candidate 2).
The following lemma gives the necessary and sufficient conditions for candidate
1 to possess a policy that would win over x̄2.

Lemma 1. Let x̄2 be the policy proposed by candidate 2 and assume that x̄2 /∈
L1. Then there exists x̄ ∈ L1 such that x̄Mx̄2 if and only if there exists a median
line m ∈Mf such that m ∩ P(x̄2, L1) = ∅.

Proof. For the right to left implication suppose that m ∈ Mf is a median line
such that m ∩ P(x̄2, L1) = ∅. Let l be a line parallel to m and tangent to
P(x̄2, L1). Then policy x̄ which is the reflection of x̄2 in l strictly dominates x̄2

as m ∈ D(x̄, x̄2).
For the left to right implication suppose that there exists x̄ ∈ L1 such

that x̄Mx̄2. Consider the bisector of x̄2 and x̄, B(x̄2, x̄) (which is tangent
to P(x̄2, L1)) and let m be the median line parallel to B(x̄2, x̄). Since x̄Mx̄2,
so it must be that m ∈ D(x̄, x̄2) and since P(x̄2, L1)∩D(x̄, x̄2) = ∅, so it must
be that m ∩ P(x̄2, L1) = ∅. ut

Lemma 1 provides us with a necessary and sufficient condition for existence
of winning best responses for a candidate and shows that they exist if and only
if there exists a median line that does not intersect a parabolic region associated
with one of the policies proposed under the ‘current’ strategy profile.

Before we proceed to introducing the results on a DFPE, let us introduce
yet another notion that will be crucial. Let m ∈ Mf be a median line and
assume that f is non-atomic. By Fact 1, every median line in Mf can be
uniquely identified by its gradient r with respect to the median line m (that is
r = tan(α), where α is the angle between m and the median line). We will use
[m]r to denote the median line identified by m and r ∈ R. The proof of the
following fact is moved to the Appendix.

Consider function γm : R \ {0} → m such that {γm(r)} = m∩ [m]r. That is
γm(r) returns the intersection point of m and [m]r.

Fact 3. If f is non-atomic, then for any m ∈Mf , γm is a continuous function
on R \ {0}.

Finally, Let p̄+
0 (m) = limr→0+ γm(r) and p̄−0 (m) = limr→0− γ

m(r).

4.2.1 Homogeneous commitment

Suppose that c1 = c2 = i (and consequently n1 = n2 = j 6= i) and a 6= b. To
simplify the presentation we will assume that for any x̄ = (x, y) ∈ R, that the
first coordinate is the value of the free issue j while the second coordinate is the
value of the committed issue i. We will also use x1 and x′1 to denote values of
free issue chosen by candidate 1 and x2 and x′2 to denote values of the free issue
chosen by candidate 2.

It turns out that in any DFPE with homogeneous commitment, both can-
didates have to propose the same value of their free issues. Thus, divergence
here is entirely driven by history of the party. For such an equilibrium to ex-
ist, the distribution f must be such that both p̄+

0 (mi) and p̄−0 (mi) exist and
p̄+

0 (mi) = p̄−0 (mi) = p̄0(mi). However, the interesting aspect of existence is
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that the feasible sets of policies of both candidates must be distant enough from
each other and the median line mi must be the bisector of them. This implies
that strong extremism in the committed dimension must prevail, while these two
parties who are known to take two opposing extremist stands in a common issue
must take a common stand in the free issue. The equilibrium strategy of each
candidate is the projection of p̄0(mi) on his feasible set of policies. Finally, the
theorem also indicates that stronger divergence in the common committed issue
cannot reduce the chance of existence of such equilibria.

Theorem 3. Consider a game Γi,i
a,b with a 6= b. If a DFPE of the game Γi,i

a,b

exists, then

(i). B(L1, L2) = {mi},

(ii). p̄+
0 (mi) = p̄−0 (mi) = p̄0(mi) ∈ R2,

(iii). |a − b| ≥ Df , where Df ∈ R≥0 is a threshold value that depends on the
distribution f only,

(iv). for any ε > 0 a DFPE of game Γi,i
a+ε,b−ε (if a > b) or game Γi,i

a−ε,b+ε (if
a < b) exists.

Moreover, if a DFPE Γi,i
a,b exists, then (x1, x2) is a DFPE if and only if

x1 = x2 = p̄0(mi) ↓ j.

Proof. We start by showing that if a DFPE of Γi,i
a,b exists, then B(L1, L2) =

{mi}. Assume that the opposite holds, that is there exists a DFPE (x1, x2) and
B(L1, L2) 6= {mi}. Notice that since L1 ∩ L2 = ∅, so they have exactly one
bisector line. Then it holds that B((x1, a), (x1, b)) 6= mi and B((x2, a), (x2, b)) 6=
mi. Since f is non-atomic, so either µ(D((x2, a), (x2, b))) > µ(D((x2, b), (x2, a)))
(if L1 is closer to mi than L2) or µ(D((x1, b), (x1, a))) > µ(D((x1, a), (x1, b)))
(if L2 is closer to mi than L1). Thus either candidate 1 can propose x2 instead
of x1 and win outright (in the first case) or candidate 2 can propose x1 instead
of x2 and win outright (in the second case). Hence (x1, x2) cannot be a Nash
equilibrium and it must be that B((x, a), (x, b)) = mi, for all x ∈ R.

We show next that if (x1, x2) is a DFPE, then it must be that x1 = x2.
Again assume that the opposite holds, that is x1 6= x2. Let x̄1 and x̄2 denote the
policies proposed by candidates 1 and 2 in equilibrium, respectively. As we have
shown above, it must be that B(L1, L2) = mi. Then P(x̄1, L2)∩P(x̄2, L1) = ∅
and there exist two different parallel lines l1 and l2, one tangent to P(x̄1, L2)
and another one tangent to P(x̄2, L1). Hence the median line m parallel to l1
and l2 satisfies m ∩ P(x̄1, L2) = ∅ or m ∩ P(x̄2, L1) = ∅ (see Figure 2).

But then, by Lemma 1, there exists an improving deviation for one of the
candidates and so (x1, x2) cannot be a Nash equilibrium. Hence it must be that
if (x1, x2) is a Nash equilibrium, then x1 = x2.

Thirdly, we show that if (x, x) is a Nash equilibrium, then it must be that
x = p̄+

0 (mi) ↓ j and x = p̄−0 (mi) ↓ j. We will show the first equality, the second
one can be shown by analogical arguments. Assume the opposite, that is x 6= x0

where x0 = p̄+
0 (mi) ↓ j. Let x̄ ∈ mi denote the projection of policy proposed

by candidate 1 in equilibrium on median line mi. Then x̄ 6= p̄+
0 (mi). Since

p̄+
0 (mi) = limr→0+ γm

i
(r) and, by Fact 3, γm

i
is continuous on R \ {0}, so for

any σ > 0 there exists rσ > 0 such that for all r′ ∈ [0, rσ), |γmi
(r′)−γmi

(0)| < σ.
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Figure 2: Configuration with x1 6= x2 and possible improving deviations (at
least one of them improves).

Take σ = |x − x0|/2 and let l be the line tangent to P(x̄2, L1) at projection of
point ((a + b)/2, (2x − x0)/2) on P(x̄2, L1) (if x0 > x) or the line tangent
to P(x̄1, L2) at projection of point ((a + b)/2, (2x0 − x)/2) on P(x̄1, L2) (if
x0 < x). Let s be the gradient of l with respect to median line mi. Then there
exists r′ ∈ [0, rσ) such that r′ < s. For any such r′ the associated median line
[mi]r′ does not intersect P(x̄2, L1) (if x0 > x) or P(x̄1, L2) (if x > x0) (see
Figure 3). Hence, by Lemma 1, (x, x) cannot be a Nash equilibrium of Γi,i

a,b,
which contradicts our assumptions. Thus it must be that x = p̄+

0 (mi) ↓ j. It can
shown, using analogical arguments, that if (x, x) is a divergent full participation
Nash equilibrium, then it must be that x = p̄−0 (mi) ↓ j. It follows that if a
divergent full participation Nash equilibrium of Γi,i

a,b exists, then it must be that
p̄+

0 (mi) = p̄−0 (mi).
Before we continue with the proof, we make the following remark.

Remark 1. Notice that the analysis above implies that if a divergent full par-
ticipation Nash equilibrium of game Γi,i

a,b exists, then it is unique and has a form
(x, x), where x = p̄0(mi) ↓ j. Hence if such equilibrium exists, then a strategy
profile (x, x), where x = p̄0(mi) ↓ j, must be a Nash equilibrium.

In the next part of the proof we show that if a divergent full participa-
tion Nash equilibrium of game Γi,i

a,b exists, then there exists a divergent Nash
equilibrium of game Γi,i

a+ε,b−ε (if a > b) or game Γi,i
a−ε,b+ε (if a < b), for any

ε > 0.
Suppose that a > b (proof for b < a is analogical) and let (x, x) be a divergent

full participation Nash equilibrium of Γi,i
a,b. Let Lε1 = {(x, a + ε) : x ∈ R} and

9
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P(x1,L2)

P(x2,L1)

Figure 3: Configuration with x < x0 and a median line lying outside region
P(x̄2, L1).

Lε2 = {(x, b − ε) : x ∈ R}. Notice that for ε > 0 it holds that P((x, a), L2) ⊆
P((x, a + ε), Lε2) and P((x, b), L1) ⊆ P((x, b + ε), Lε1). Thus any median line
intersecting both P((x, a), L2) and P((x, b), L1) intersects both P((x, a+ε)), Lε2)
and P((x, b− ε), Lε1) as well.

Hence, by Lemma 1, (x, x) is a Nash equilibrium of game Γi,i
a+ε,b−ε. More-

over, there exists a minimal distance Df ≥ 0 between a and b such that
P((x, a), L2) ∪ P((x, b), L1) intersects all the median lines. Value of Df de-
pends on the distribution f only as x = p̄0(mi) ↓ j depends on the distribution
f . ut

Equilibria with a non-empty core If the distribution function f has a non-
empty core, then we are able to extend Theorem 3 to provide the necessary and
sufficient conditions for existence of a DFPE and its full characterisation. The
theorem shows that when the core is non-empty, such an equilibrium exists if
and only if the two values of the committed issues lie equidistantly on either
side of the median line that is vertical to the committed issue and that both
candidates choose identical policies on their common free issue. In that sense,
there is convergence of policies in the common free issue.

Theorem 4. Consider a game Γi,i
a,b with a 6= b. If distribution function f has

non-empty core Cf = {c̄f}, then a DFPE of Γi,i
a,b exists if and only if B(L1, L2) =

mi. Moreover, (x1, x2) is a DFPE if and only if x1 = x2 = c̄f ↓ j.

Proof. Notice that if c̄f is a core point, then p̄+
0 (mi) = p̄−0 (mi) = c̄f and Df = 0.

Hence necessary conditions for existence of full participation Nash equilibrium
follow immediately from Theorem 3.

10
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Figure 4: Distribution function for Example 1.

Similarly, if (x1, x2) is a divergent full participation Nash equilibrium then
x1 = x2 = c̄f ↓ j follows immediately from Theorem 3.

On the other hand we will show that if B(L1, L2) = mi, then a strategy
profile (x, x) such that x = c̄f ↓ j is a Nash equilibrium of game Γi,i

a,b. Let x̄1

and x̄2 denote the policies proposed by candidates 1 and 2, respectively, under
the strategy profile (x, x). Notice that P(x̄1, L2) and P(x̄2, L1) intersect all the
median lines. Hence, by Lemma 1, no profitable deviation from (x, x) is possible
by any candidate and so (x, x) is a Nash equilibrium. ut

Equilibria with an empty core We are unable to give a full set of condi-
tions for the existence of a DFPE and provide complete characterisation of such
equilibria if the core of f is empty. However we provide the following examples
with empty core distributions, one where a DFPE exists and another where it
fails to exist.

Example 1 (Existence of a DFPE). Consider the distribution function f which
supports a (closed) square with sides of length 2 as presented in Figure 4. The
square is divided into 8 parts of equal area. The density function is constant
on each of these areas (including the clockwise border, and excluding the centre)
and at the centre its value is the same as in areas labelled with B. The mass
of each area labelled with A is µA and the mass of each area labelled with B is
µB. We assume that µB > µA > 0 and µA + µB = 1/4. We will also refer to a
difference θ = µB − µA between the two masses (notice that 0 < θ < 1/4).

Observe that the horizontal median line is the horizontal axis of symmetry
of the square and vertical median line is the vertical axis of symmetry of the
square. Also observe that the core is indeed empty.

Let the coordinate system be orientated so that the horizontal median line
is the horizontal axis (x) and the vertical median line is the vertical axis (y).
Consider a game Γi,i

c,−c with committed issue i of both candidates being horizontal
dimension and the values to which candidate 1 and 2 are committed being c and
−c, respectively. We prove the following claim:

Claim 1. If c ≥ 4θ, then (−2θ,−2θ) is a Nash equilibrium of game Γi,i
c,−c.
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Figure 5: Configuration (1) with median line y = r(x + x(r)) intersecting the
square.

Proof. Let x(r) be the distance from the origin to the intersection point (−x(r), 0)
of a median line given by the equation y = r(x+ x(r)) with the horizontal me-
dian line as a function of the gradient r. We will show some properties of x(r)
that will be useful to prove our claim.

Notice that since the distribution is symmetric about the horizontal axis, so
x(r) = x(−r). Hence we will restrict our attention to the case where r > 0.
Observe that if r > 0, then the intersection point cannot be on the right hand
side of the origin, as the mass on the left hand side of the line y = rx is larger
than the mass on its right hand side. Thus it must be that x(r) ≥ 0. Moreover,
it must be that x(r) < 1 (that is the intersection point lies within the bounds of
the square), since otherwise the mass on the right hand side of the line would be
larger than the mass on the left hand side of the line. Similarly, if r > 0, then
the associated median line cannot intersect the upper bound of the square to
the right of the vertical axis as this axis it a median line. Hence there are three
configuration with median line intersecting the square possible as depicted in
Figures 5, 6 and 7 respectively. Notice that since x(r) < 1, so for r ∈ (1, 1/2)
it must be that median line y = r(x + x(r)) intersects the square according to
configuration (1).

We will now compute the value of x(r) for configuration (1). Consider a line
y = r(x+d) intersecting the square according to configuration (1). To compute
the mass on the left hand side of a line y = r(x+ d), where d ∈ [−1, 0], we will
need to compute the masses of the regions R1, R2, R3, R4 and R5, as presented
in Figure 5.

12



It is easy to check that the areas of the respective regions are as follows:

v1(r, d) =
r(1− d)2

2
,

v2(r, d) =
rd2

2(r + 1)
,

v3(r, d) =
r2d2

2(r + 1)
, (1)

v4(r, d) =
r2d2

2(1− r)
,

v5(r, d) =
r((r − 1)(d+ 1)2 + d2)

2(r − 1)
.

Now the mass of the left hand side of the line y = r(x+ d) is

2µB + 2µA − 2µB(v2(r, d) + v4(r, d))− 2µA(v3(r, d) + v5(r, d)) + 2µBv1(r, d)

which, after substituting µB − µA by θ is equal to

4r3θd2 + r(r2 − 1)d+ (r2 − 1)(2rθ − 1)
2(r2 − 1)

Making this equal to 1/2 and solving for d we find x(r), which is the inter-
section point of the median line y = r(x+ x(r)) with the horizontal axis

x(r) =

√
(1− r2)(32r2θ2 + 1− r2)− (1− r2)

8r2θ
(2)

Notice that
x0 = lim

r→0+
x(r) = 2θ <

1
2
,

so p̄+
0 = (−2θ, 0). Moreover, by symmetry of the distribution about horizontal

median line, p̄−0 = p̄+
0 , and so p̄0 = (−2θ, 0).

We will also show that x(r) is decreasing in r for 0 < r ≤ 1. Differentiating
x(r) we get

x′(r) =

√
(1− r2)(r2(32θ2 − 1) + 1) + r2(1− 16θ2)− 1

4r3θ
√

(1− r2)(r2(32θ2 − 1) + 1)
.

The denominator of x′(r) is > 0 for 0 ≤ r ≤ 1 and 0 < θ < 1/4 and the
nominator can be rewritten as

256r4θ4

r2(1− 16θ2)− 1−
√

(1− r2)(r2(32θ2 − 1) + 1)
. (3)

Since

(1− r2)(r2(32θ2 − 1) + 1) = r2(1− 16θ2)− 1 + 16r2θ2(3− 2r2) + r4 − 3r2 + 2

and
16r2θ2(3− 2r2) + r4 − 3r2 + 2 > 0

13
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Figure 6: Configuration (2) with median line y = r(x + x(r)) intersecting the
square.

for 0 ≤ r ≤ 1 and 0 < θ < 1/4, so (3) is < 0 and so x′(r) < 0. Thus x(r) is
decreasing on (0, 1] for 0 < θ < 1/4. This means in particular that x(r) < 2θ
for 0 ≤ r ≤ 1 and 0 < θ < 1/4. Consider a line y = r(x + 2θ) and suppose
that it intersects the square according to configuration (1). Then it holds that
0 ≤ r ≤ 1/(1 + 2θ). Notice that for any 2θ < d ≤ 0, the line y = r(x + d)
intersects the square according to configuration (1) as well. Hence, by the fact
that 2θ < x(r) ≤ 0 for configuration (1) and 0 < θ < 1/4, it holds that x(r) < 2θ
for 0 ≤ r ≤ 1/(1 + 2θ) and 0 < θ < 1/4.

For the remaining two configurations, we will show that in each of them
it must be that x(r) < 2θ. Consider a line y = r(x + 2θ) and suppose that
it intersects the square according to configuration (2) (see Figure 6). Then it
holds that 1/(1 + 2θ) ≤ r ≤ 1/(1 − 2θ). We will show that the sum of masses
of the regions R2, R3, R′4 and R′5 is greater than the mass of region R1, which
implies that the median line y = r(x + x(r)) must be to the right of the line
y = r(x+ 2θ), that is x(r) < 2θ.

The area of the new region R′4 is

v′4(r, d) =
r − (rd− 1)2

2r
,

and the mass of the area R′5 is µA. Hence the difference between the sum of
the masses of regions R2, R3, R′4 and R′5 and the mass of region R1 is

2µBv2(r, 2θ) + 2µAv3(r, 2θ) + 2µBv′4(r, 2θ) + µA − 2µBv1(r, 2θ)

which, after substituting µB − µA by θ is equal to

D2(r, θ) =
r3(12θ2 − 48θ3 − 1) + r2(28θ2 + 4θ + 1− 16θ3) + r(16θ2 + 1)− 4θ − 1

8r(r + 1)
.

Differentiating D2(r, θ) over r we can easily check that it is increasing with r
increasing on the interval [1/(1 + 2θ), 1/(1− 2θ)], for 0 < θ < 1/4. Thus

D2(r, θ) ≥ D2

(
1

1 + 2θ
, θ

)
=

32θ2

(2θ + 1)3
> 0
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Figure 7: Configuration (3) with median line y = r(x + x(r)) intersecting the
square.

for 1/(1 + 2θ) ≤ r ≤ 1/(1− 2θ) and 0 < θ < 1/4. Hence x(r) ≤ 2θ in this case.
Lastly, consider a line y = r(x+2θ) and suppose that it intersects the square

according to configuration (3) (see Figure 7). Then it holds that 1/(1 − 2θ) ≤
r ≤ 1/(2θ). We will show that the sum of the masses of regions R2, R3, R′4
and R′5 is greater than the sum of the masses of regions R′1 and R6, which
implies that the median line y = r(x + x(r)) must be to the right of the line
y = r(x+ 2θ), that is x(r) < 2θ.

The areas of the new regions R′1 and R6 are

v′1(r, d) =
r − 1− rd2

2(r − 1)
,

v6(r, d) =
(r(d− 1) + 1)2

2r(r − 1)
.

Hence the difference between the sum of the masses of regions R2, R3, R′4 and
R′5 and the masses of regions region R′1 and R6 is

2µBv2(r, 2θ) + 2µAv3(r, 2θ) + 2µBv′4(r, 2θ) + µA − 2µBv′1(r, 2θ)− 2µAv6(r, 2θ)

which, after substituting µB − µA by θ is equal to

D3(r, θ) =
θ(4r2θ2(2r + 1− r2) + r3 − r2 − r + 1)

r(r2 − 1)
.

It is easy to check that

r3 − r2 − r + 1 ≥ 0

for r ≥ 0 and
4r2θ2(2r + 1− r2) ≥ 0
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for 0 ≤ r ≤ 1 +
√

2 and θ ≥ 0. If r > 1 +
√

2, then

4r2θ2(2r + 1− r2) + r3 − r2 − r + 1 ≥ r(r − 1)2 + 2 > 0,

as, θ ≥ 1/(2r). Thus we have shown that D3(r, θ) ≥ 0 for 0 < θ < 1/4 and
1/(1− 2θ) ≤ r ≤ 1/(2θ) and so x(r) ≤ 2θ in this case.

Now we are ready to show that (−2θ,−2θ) is a Nash equilibrium of game Γ.
Notice that the region

P((−c,−2θ), L1) =
{

(x, y) ∈ R2 : y ≥ (x+ 2θ)2

4c

}
and the region

P((c,−2θ), L2) =
{

(x, y) ∈ R2 : y ≤ − (x+ 2θ)2

4c

}
.

Observe that both the regions intersect the vertical median line. We will
show that for all r ∈ R \ {0} both regions intersect the median line y = r(x +
x(r)). Consider the region P((−c,−2θ), L1). Since all median lines intersect
the horizontal median line line within the interval (−2θ, 0], so for all r < 0 the
median line y = r(x + x(r)) intersects this region. For r > 0 consider the line
y = r(x + xp(r)) tangent to this region. Then xp(r) = 2θ − rc and if we show
that x(r) ≥ xp(r), for r > 0, then this will imply that the associated median
lines intersect the region. As we observed above, it must be that x(r) ≥ 0, for
r > 0. Thus if xp(r) ≤ 0, that is r ≥ 2θ/c, then the inequality is satisfied.
Suppose that r < 2θ/c. Then r ≤ 1/2, as c ≥ 4θ, and we have to show that the
inequality holds for configuration (1), that is

xp(r) ≤
√

(1− r2)(32r2θ2 + 1− r2)− (1− r2)
8r2θ

which is equivalent to

−r c
4θ
≤
√

(1− r2)(32r2θ2 + 1− r2)− (1− r2)
32r2θ2

− 1
2
. (4)

Consider the function

ϕ(r, θ) =

√
(1− r2)(32r2θ2 + 1− r2)− (1− r2 + 16r2θ2)

32r2θ2

=

√
(1− r2 + 16r2θ2)2 − 256r4θ4 − (1− r2 + 16r2θ2)

32r2θ2

obtained from the right hand side of the inequality. Let

ψ(r, θ) =
√

(1− r2 + 16r2θ2)2 − 256r4θ4 − (1− r2 + 16r2θ2).

Notice that ψ(r, θ) < 0 for 0 < r ≤ 1/2 and 0 < θ ≤ 1/4. Differentiating ϕ(r, θ)
over θ we get

∂ϕ(r, θ)
∂θ

=
ψ(r, θ)

√
(1− r2)(r2(32θ2 − 1) + 1)

16r2θ3(r2(32θ2 − 1) + 1)
.
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and since ψ(r, θ) < 0 for 0 < r ≤ 1/2 and 0 < θ ≤ 1/4 so

∂ϕ(r, θ)
∂θ

< 0,

for 0 < r < 1/2 and 0 < θ ≤ 1/4. Thus ϕ(r, θ) is decreasing in θ for θ ∈ (0, 1/4],
for any 0 < r ≤ 1/2, and to show inequality (4), we need to show that

−r c
4θ
≤ ϕ(r, 1/4) =

√
1− r4 − 1

2r2
, (5)

for 0 < r ≤ 1/2 and c ≥ 4θ. Since
√

1− r4 − 1
2r2

= − r2

2(1 +
√

1− r4)
≥ −r

2

2
> −r ≥ −r c

4θ

for 0 < r ≤ 1/2 and c ≥ 4θ, so the inequality (4) holds. Thus we have shown
that all median lines intersect the region P((−c,−2θ), L1). Showing that all
median lines intersect the region P((c,−2θ), L2) can be done by symmetrical
arguments, due to the fact that f is symmetrical about the horizontal median
line. Hence if c ≥ 4θ, then (−2θ,−2θ) is a Nash equilibrium of Γi,i

c,−c. ut

To be complete, the next example demonstrates that an equilibrium may of
course not exist with an empty core.

Example 2 (Non-existence of a DFPE). Consider the distribution function f
which is a rotated distribution from Example 1 with support presented in Fig-
ure 8.

Let the coordinates system be orientated so that the horizontal median line
is the horizontal axis (x) and the vertical median line is the vertical axis (y).
Consider a game Γi,i

c,−c with committed issue i of both candidates being horizontal
dimension and the values to which candidates 1 and 2 are committed being c and
−c, respectively. We prove the following claim:

Claim 2. If c 6= 0, then a Nash equilibrium of game Γi,i
c,−c does not exist, that

is there is no DFPE.
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Proof. Like in Example 2, if 0 < r < 1/2, the median line r(x+ x(r)) intersects
the square according to configuration (1) (see Figure 5). Consider a line r(x+d)
intersecting the square according to configuration (1). Then the mass on the
left hand side of the line is

2µB + 2µA − 2µA(v2(r, d) + v5(r, d)) + 2µB(v3(r, d) + v4(r, d)) + 2µBv1(r, d)),

where v1(r, d), v2(r, d), v3(r, d), v4(r, d) and v5(r, d) are areas of regions R1, R2,
R3, R4 and R5, respectively, as computed in Example 3 (see Equation (1)).
After substituting µB − µA by θ this mass is equal to

2d2rθ(1− 2r − r2)− dr(1− r2) + (1− r2)(2rθ + 1)
2(1− r2)

Making this equal to 1/2 and solving for d we find x(r), which is the inter-
section point of the median line y = r(x+ x(r)) with the horizontal axis

x(r) =
1− r2 −

√
(1− r2)((1− r2)(1− 16θ2) + 32rθ2)

4θ(1− 2r − r2)

Notice that

x0 = lim
r→0+

x(r) =
1−
√

1− 16θ2

4θ
> 0

for 0 < θ < 1/4. Hence it holds that p̄+
0 = (−x0, 0). Moreover, by symmetry

of the distribution about vertical median line, p̄−0 = (x0, 0), and since x0 > 0 it
holds that p̄+

0 6= p̄−0 . Thus, by Theorem 3, there is no full participation Nash
equilibrium of game Γi,i

c,−c if c > 0. ut

4.2.2 Heterogeneous commitment

Suppose that c1 6= c2 (and consequently n1 6= n2). To simplify the presentation,
for any x̄ = (x, y) ∈ R, we will assume that the first coordinate is the value
of the committed issue candidate 1 or the free issue of candidate 2, while the
second coordinate is the value of the free issue of candidate 1 or the committed
issue of candidate 2. We will also use y1 and y′1 to denote values of free issue
chosen by candidate 1 and x2 and x′2 to denote values of the free issue chosen
by candidate 2.

In what follows we will refer to median lines mec1−ec2
and mec1+ec2

, which
will be denoted by m+ and m−, respectively, to simplify the notation. The
following lemma is itself interesting. It shows that for such an equilibrium to
exist, any one of exactly two symmetric cases must hold as far as the committed
values of each candidate is concerned:

Lemma 2. Consider the game Γi,j
a,b with i 6= j. If a DFPE exists, then either

(a, b) ∈ m+ or (a, b) ∈ m−.

Proof. Assume the opposite and let (y1, x2) be a DFPE of game Γi,j
a,b. Let

x̄1 and x̄2 denote the policies proposed by candidates 1 and 2 in equilibrium,
respectively. Since the equilibrium is divergent, so it must be that x̄1 6= x̄2.

Notice first that it must be that y1 6= b and x2 6= a. For suppose the
opposite and assume that y1 = b. Since the equilibrium is divergent, so it must
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be that x2 6= a. Moreover it must be that x̄1 and x̄2 are symmetric about
the median line mi. But then candidate 2 can reposition himself to x′2 such
that (x′2, b) ∈ L2 ∩mi and win outright, which contradicts the assumption that
(y1, x2) is a Nash equilibrium. Hence it must be that y1 6= b. The case of x2 6= a
can be shown by analogical arguments.

For the remaining part let l+ denote the line parallel to m+ and such that
(a, b) ∈ l+ and let l− denote the line parallel to m− such that (a, b) ∈ l−.
Then either x̄1 and x̄2 lie on the opposite sides of l+ or l−. Suppose that the
first case holds and suppose that δ(x̄1,m

+) < δ(x̄2,m
+) (where δ denotes the

distance between a point and a line). Then candidate 2 can reposition himself
to y′1 such that B((a, y′1), x̄2) = l+ and win outright. Similarly there would be
an improving deviation for candidate 2 if it was that δ(x̄2,m

+) < δ(x̄1,m
+).

Hence it must be that l+ = m+ and so (a, b) ∈ m+ in this case. It can be shown,
by analogical arguments, that it must be that l− = m− in the case where x̄1

and x̄2 lie on the opposite sides of l−. ut

From now on we will restrict our attention to the case where (a, b) ∈ m+.
Analogous results hold for the symmetric case where (a, b) ∈ m−.

It turns out that in any DFPE with heterogeneous commitment (and with
(a, b) ∈ m+), both candidates must propose the projection of the point p̄0(m+)
on their respective free issues. Hence, for such equilibrium to exist, the distri-
bution f must be such that both p̄+

0 (m+) and p̄−0 (m+) exist and p̄+
0 (m+) =

p̄−0 (m+) = p̄0(m+). Moreover the feasible sets of policies of both candidates
must be distant enough from the point p̄0(m+). From Lemma 2 and points (ii)
and (iii) of Theorem 5 it will follow that in equilibrium, the distance between
the policies announced by the two parties must be significantly large.

Theorem 5. Consider a game Γi,j
a,b with i 6= j and suppose that (a, b) ∈ m+. If

a DFPE exists then

(i). p̄+
0 (m+) = p̄−0 (m+) = p̄0(m+),

(ii). if a < p̄0(m+) ↓ i, then p̄0(m+) ↓ i − a ≥ Dl
f , where Dl

f ∈ R≥0 is a
threshold value that depends on the distribution f only,

(iii). if a > p̄0(m+) ↓ i, then a − p̄0(m+) ↓ i ≥ Dr
f , where Dr

f ∈ R≥0 is a
threshold value that depends on the distribution f only,

(iv). for any ε > 0 a DFPE of game Γi,j
a−ε,b−ε (if a < p̄0(m+) ↓ i) or game

Γi,j
a+ε,b+ε (if a > p̄0(m+) ↓ i) exists.

Moreover, if a DFPE of game Γi,j
a,b exists, then a strategy profile (y1, x2) is

a DFPE if and only if y1 = p̄0(m+) ↓ j and x2 = p̄0(m+) ↓ i.

Proof. We start by showing that if (y1, x2) is a DFPE, then it must be that the
policies x̄1 and x̄2 proposed by candidates 1 and 2 in equilibrium are symmetric
about the median line m+. Assume that the opposite holds. Then P(x̄1, L2) ∩
P(x̄2, L1) = ∅ and there exist two parallel lines l1 and l2, one tangent to
P(x̄1, L2) and another one tangent to P(x̄2, L1). Hence the median line m
parallel to l1 and l2 satisfies m ∩ P(x̄1, L2) = ∅ or m ∩ P(x̄2, L1) = ∅. (see
Figure 9).
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Figure 9: Configuration with x̄1 and x̄2 not symmetric about median line m+

and possible improving deviations (at least one of them improves).

But then, by Lemma 1, there exists an improving deviation for at least one
of the candidates, so (y1, x2) cannot be a Nash equilibrium. Hence it must be
that x̄1 and x̄2 are symmetric about the median line m+.

Next we show that if (y1, x2) is a DFPE, then it must be that y2 = p̄0(m+) ↓ j
and x2 = p̄0(m+) ↓ i. Notice that if x̄1 and x̄2 are symmetric about median line
m+, then the regions P(x̄1, L2) and P(x̄2, L1) are tangent to each other and the
tangency point x̄ ∈ m+ (see Figure 10).

We will show that it must be that x̄ = p̄+
0 (m+) and x̄ = p̄−0 (m+). We will

show the first equality, the second one can be shown analogically. Arguments
here are similar to those used in the proof of Theorem 3. Suppose that x̄ 6=
p̄+

0 (m+). Since p̄+
0 (m+) = limr→0+ γm

+
(r) and γm

+
is continuous on R \ {0},

so for any σ > 0 there exists rσ > 0 such that for all r′ ∈ [0, rσ), |γm+
(r′) −

γm
+

(0)| < σ. Take σ = ‖x̄ − p̄+
0 (m+)‖/2 and let s be the gradient of the line

tangent to P(x̄2, L1) at the projection of point (x̄ + p̄+
0 (m+))/2 on P(x̄2, L1)

with respect to median line m+.
Then there exists r′ ∈ [0, rσ) such that r′ < s. For any such r′ the associated

median line [m]r′ does not intersect P(x̄2, L1) (if p̄+
0 (m+) > x̄) or P(x̄1, L2) (if

p̄+
0 (m+) < x̄) (see Figure 11). Hence, by Lemma 1, (y1, x2) cannot be a Nash

equilibrium of Γi,j
a,b, which contradicts our assumptions. Thus it must be that

x̄ = p̄+
0 (m+). We can show, using analogical arguments, that it must also be

that x̄ = p̄−0 (m+). It follows that if a DFPE of Γi,j
a,b exists, then it must be that

p̄+
0 (m+) = p̄−0 (m+) = p̄0(m+). Moreover it must be that p̄0(m+) = x̄, that is
y1 = p̄0(m+) ↓ j and x2 = p̄0(m+) ↓ i.

Before we continue with the proof, we make the following remark:
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Figure 10: Tangency of regions P(x̄1, L2) and P(x̄2, L1) when x̄1 and x̄2 are
symmetric about median line m+.
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Figure 11: Configuration with p̄+
0 (m+) > x̄ and a median line lying outside

region P(x̄2, L1).
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(a-ε,b-ε)

(a,b)

(x2,y1)

(a,y1)(a-ε,y1)

L1

L2

Lε1

Lε2

(x2,b)

Figure 12: Configuration with a < p̄0(m+) ↓ i, ε > 0 and regions
P((a, y1), L2) ⊆ P((a− ε, y1), Lε2).

Remark 2. The analysis above implies that if a DFPE of Γi,j
a,b exists, then it is

unique and has the form (y1, x2), where y1 = p̄0(m+) ↓ j and x2 = p̄0(m+) ↓ i.
Hence if such equilibrium exists, then a strategy profile (y1, x2), where y1 =
p̄0(m+) ↓ j and x2 = p̄0(m+) ↓ i, must be a Nash equilibrium of game Γi,j

a,b.

In the next part of the proof we show that if a DFPE of game Γi,j
a,b exists,

then, for any ε > 0, a DFPE of game Γi,j
a−ε,b−ε (if a < p̄0(m+) ↓ i) or game

Γi,j
a+ε,b+ε (if a > p̄0(m+) ↓ i) exists.

Suppose that a < p̄0(m+) ↓ i (proof for a > p̄0(m+) ↓ i is analogical) and
let (y1, x2) be a DFPE of Γi,j

a,b. Let Lε1 = {(a − ε, y) : y ∈ R} and Lε2 =
{(x, b − ε) : x ∈ R}. Notice that for ε > 0 it holds that P((a, y1), L2) ⊆
P((a − ε, y1), Lε2) and P((x2, b), L1) ⊆ P((x2, b − ε), Lε1) (see Figure 12). Thus
any median line intersecting both P((a, y1), L2) and P((x2, b), L1) intersects
both P((a− ε, y1)), Lε2) and P((x2, b− ε), Lε1) as well.

Hence, by Lemma 1, (y1, x2) is a Nash equilibrium of game Γi,j
a−ε,b−ε. More-

over, there exists a minimal distance Dl
f ≥ 0 between p̄0(m+) ↓ i and a such

that P((a, y1), L2) ∪ P((x2, b), L1) intersects all the median lines. Value of Dl
f

depends on the distribution f only as p̄0(m+) depends on the distribution f .
If a > p̄0(m+) ↓ i, then we can show analogical result for game Γi,j

a+ε,b+ε,
using similar arguments. Hence there exists a minimal distance Dr

f ≥ 0 between
a and p̄0(m+) ↓ i such that P((a, y1), L2)∪P((x2, b), L1) intersects all the median
lines. Again, value of Dr

f depends on the distribution f only. ut

As mentioned before, an analogical theorem holds for the symmetric case
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where (a, b) ∈ m−.

Equilibria with a non-empty core If the distribution function f has non-
empty core, then we are able to extend Theorem 5 to provide the necessary and
sufficient conditions for existence of divergent full participation Nash equilibrium
and its full characterisation. The main feature of the following theorem is that
such a DFPE can be truly divergent, that is each candidate can propose a unique
policy in each issue. In particular, the chosen value of the free issue by one
candidate is the projection of the core on the opponent’s committed issue.

Theorem 6. Consider a game Γi,j
a,b with i 6= j. If the distribution function f has

a non-empty core Cf = {c̄f} then a DFPE exists if and only if either (a, b) ∈ m+

or (a, b) ∈ m−. Moreover, (y1, x2) is a DFPE if and only if y1 = c̄f ↓ j and
x2 = c̄f ↓ i.

Proof. It follows from Lemma 2 that if a DFPE of game Γi,j
a,b exists, then either

(a, b) ∈ m+ or (a, b) ∈ m−.
Suppose that (a, b) ∈ m+. If (y1, x2) is a DFPE then y1 = c̄f ↓ j and

x2 = c̄f ↓ i follows immediately from Theorem 5.
On the other hand we will show that a strategy profile (y1, x2) such that

y1 = c̄f ↓ j and x2 = c̄f ↓ i is a Nash equilibrium of game Γi,j
a,b. Let x̄1 and

x̄2 denote the policies proposed by the candidates 1 and 2, respectively, under
the strategy profile (y1, x2). Notice that P(x̄1, L2) and P(x̄2, L1) intersect all
the median lines. Hence, by Lemma 1, no profitable deviation from (y2, x1) is
possible by any candidate and so (y1, x2) is a Nash equilibrium. This shows also
that if (a, b) ∈ m+, then a DFPE of Γi,j

a,b exists.
If (a, b) ∈ m− then the theorem can be proved by similar arguments, using

the analogue of Theorem 5 for (a, b) ∈ m−. ut

Equilibrium with an empty core As in the case of homogeneous commit-
ment, we are unable to give full conditions for existence of a DFPE and complete
characterisation of Nash equilibria if the core of f is empty. However we provide
the following example with an empty core distribution where a DFPE exists.

Example 3 (Existence of equilibrium). Consider the distribution function f
presented in Figure 13, which support is a (closed) square with side of length 2.
Moreover the square is divided into 8 parts of equal area. The density function
is constant on each of these areas (including the clockwise border, and excluding
the centre) and at the centre its value is the same as in areas labelled with B.
The mass of each area labelled with A is µA and the mass of each area labelled
with B is µB. Moreover µB > µA > 0 and µA + µB = 1/4. As before, we
will also refer to a difference θ = µB − µA between the two masses (notice
that 0 < θ < 1/4). Notice that the distribution is a rotated distribution from
Example 1 and so again the core is empty.

Let the coordinate system be re-orientated so that the horizontal (x) axis is
the horizontal axis of symmetry of the square and the vertical (y) axis is the
vertical axis of symmetry of the square. Notice that the lines y = x and y = −x
are median lines m+ and m−, respectively.

Since the distribution f is a rotated distribution from Example 1 so the dis-
tance from the origin to the intersection point of m+ and a median line [m+]r
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Figure 13: Distribution function for Example 3.

is given by the function x(r), as computed in Example 1. Hence x(r) ∈ [0, 2θ),
x(r) = x(−r) and for 0 < r ≤ 1/2, x(r) is given by equation (2). Moreover it
holds that p̄−0 (m+) = p̄+

0 (m+) = p̄0(m+) = (
√

2θ,
√

2θ).
Consider a game Γi,j

−c,−c with the committed issue i of candidate 1 being
vertical dimension, the committed issue j of candidate 2 being horizontal dimen-
sion and the values to which candidate 1 and 2 are committed being c and −c,
respectively. We prove the following:

Claim 3. If c ≥ 2
√

2θ, then (
√

2θ,
√

2θ) is a Nash equilibrium of game Γi,j
−c,−c.

Proof. Notice that the region

P((−c,
√

2θ), L2) =

{
(x, y) ∈ R2 : y ≥ (x+ c)2

2(c+
√

2θ)
+
√

2θ − c
2

}

and the region

P((
√

2θ,−c), L1) =

{
(x, y) ∈ R2 : x ≥ (y + c)2

2(c+
√

2θ)
+
√

2θ − c
2

}
.

Both the regions intersect the median line m− and are tangent to each other
and to median line m+ at point (

√
2θ,
√

2θ) (see Figure 14).
We will show that for all r ∈ R\{0} both these regions intersect the median

line [m+]r. Consider region P((
√

2θ,−c), L1). Since all median lines intersect
the median line m+ between points (0, 0) and (

√
2θ,
√

2θ), so for all r < 0
the median line [m+]r intersects the region. For r > 0 consider the line tr
parallel to [m+]r and tangent to the region P((

√
2θ,−c), L1) and let xp(r) be
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Figure 14: Regions P((−c,
√

2θ), L2) and P((
√

2θ,−c), L1).

the signed4 distance between the origin and the intersection point of tr and
m+. Then xp(r) = (2θ −

√
2rc)/(r + 1) and if we show that x(r) ≥ xp(r), for

r > 0, then it will imply that associated median lines intersect the region. As
we observed above, it must be that x(r) ≥ 0, for r > 0. Thus if xp(r) ≤ 0, that
is r ≥

√
2θ/c, then the inequality is satisfied. Suppose that r <

√
2θ/c. Then

r ≤ 1/2, as c ≥ 2
√

2θ, and we have to show that

xp(r) ≤
√

(1− r2)(32r2θ2 + 1− r2)− (1− r2)
8r2θ

as formula (2) for x(r) applies. Notice that

xp(r) ≤
2θ − 4rθ
r + 1

≤ 2θ − 4rθ

for 0 < r ≤ 1/2 and 0 < θ ≤ 1/4 and, as we have shown in Example 1

2θ − 4rθ ≤
√

(1− r2)(32r2θ2 + 1− r2)− (1− r2)
8r2θ

for 0 < r ≤ 1/2 and 0 < θ ≤ 1/4.
Thus we have shown that all median lines intersect the region P((

√
2θ,−c), L1).

Showing that all median lines intersect the region P((−c,
√

2θ), L2) can be done
by symmetrical arguments, due to the fact that f is symmetrical about the
median line m+. Hence if c ≥ 2

√
2θ, then (

√
2θ,
√

2θ) is a Nash equilibrium of
Γi,j
−c,−c. ut
4By the signed distance of a point from the origin we mean the distance between the point

and origin, if horizontal coordinates of the point are positive and minus the distance between
the point and origin, otherwise.
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4.3 One-party equilibria

Although the focus of this paper is on full participation Nash equilibria, or in
other words on two party equilibria, we would like to make some comments on
Nash equilibria where one of the players stays out of the competition. Like in
the case of full participation Nash equilibrium, the key to analysis of this case is
Lemma 1. Clearly if the game is such that none of the bisectors of feasible sets
of policies of the players is a median line, then one of the players cannot have
an unbeatable policy to propose. For a one party Nash equilibrium to exist
it is necessary that another player can propose a policy x̄ such that P(x̄, L)
intersects all the median lines (where L denotes the feasible sets of policies of
the opponent). Notice that if this condition is satisfied, then it is possible that
it is satisfied for other policies in the close neighbourhood of x̄ and so there can
be more than one one-party equilibrium for such game. As a passing remark,
we would like to mention that in our model the only class of equilibria which are
robust to small perturbations to the distribution of voters preferences is where
a single party stands uncontested. This is because full participation equilibria
imply that the two parties are tied in their vote support. However, this critique
holds for all models with sincere voting.

5 Discussion

Existence of full participation equilibrium depends on the existence of some spe-
cial point in the ideology space, identified in our analysis by p0. To understand
the role of the voters with ideal policy as p0, we first recall the definition of the
constrained core from Beeler Asay (2008): the constrained core of candidate i
is simply the set of policies available to candidate i which remain unbeatable
by any policy available to candidate j in our restricted voting scenario.

We have shown that when the set of voters is a continuum, the constrained
cores of each candidate, if non-empty, contain unique policy points – constrained
core points. In our game, any full participation Nash equilibrium must involve
each candidate proposing unbeatable strategies. Hence such an equilibrium
either does not exist (when the constrained core of some candidate is empty) or
policies proposed by the players in equilibrium are their respective constrained
core points. Point p0 is then the projection of these constrained core points of
each candidate. A voter at p0 is indifferent between the constrained core points
of each candidate while he strictly prefers a constrained core point of each player
to any other policy of that player. Hence, any voter at p0 enjoys the following
decisive power: if he weakly prefers the policy proposed by candidate 1 to any
policy that is feasible to candidate 2, then 1 cannot be strictly beaten by 2,
and the same holds for candidate 2. Hence each candidate wants to secure the
support of these voters. In a one-dimensional competition with two competing
candidates, the median voter plays exactly this role. However, we would like
to point out that voters on the bisecting median line in our model are not in
this sense median voters. To see this, pick an arbitrary median line m and
two arbitrary policy choices of the candidates. Suppose some voter i with ideal
policy on m strictly prefers the policy proposed by candidate 1 to any other
policy proposed by candidate 2. If voter i is not located at p0, then the policy
of candidate 1 cannot be 1’s constrained core point and hence candidate 2 can
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defeat this policy.
Given this discussion we would like to identify voters with ideal policy p0

as strict median voters. Of course there may be distributions where there is
no strict median voter and in every such situation a divergent full-participation
equilibrium will not exist. In case of homogeneous commitment, the strict me-
dian, if it exists is always unique. This is true for the heterogeneous case as
well, barring a very special case: one where L1, L2, m+ and m− have a common
intersection and we have a pair of strict medians (notice that in this case the
projections of strict medians on Li will coincide for one of the candidates i).

Although we know that even if core of the distribution is non-empty, then
for any median line m point p0(m) may still exist, we are unable to obtain
any properties of the distribution that would guarantee its existence in general.
First of all it is unclear what properties of the distribution guarantee that points
p+

0 (m) and p−0 (m) coincide. We conjecture that a sufficient condition for this to
happen is continuity of the density function at almost every point of m. However
we are unable to prove this result. Second, and a more primitive problem
is existence of these limit points, that is what properties of the distribution
guarantee that p+

0 (m) ∈ R2 and p−0 (m) ∈ R2.
We would like to note that existence of point p0(m), where m is a median line

which is a bisector of feasible sets of policies of the candidates is still not sufficient
for guaranteeing existence of a DFPE. Another problem is the behaviour of
median lines [m]r in the neighbourhood of r = 0. The question is whether it is
always possible to have parabolic regions of ideal positions of loyal voters of the
candidates large enough to “capture” all the median lines.

Despite the problems mentioned above it is still possible to have distributions
with empty core for which a DFPE exist, even in the heterogeneous settings, as
presented in Examples 1 and 3.

Our results show that in case of Downsian competition with unidimensional
commitment some sort of convergence is still in place. In case of a CFPE,
this leads either to the median voter theorem and convergence to the median
point (in homogeneous setting) of the free issue or convergence to the policy in
the union of the candidates’ feasible sets of policies which is weakly majority
preferred to all other policies in the union of these sets. In case of a DFPE, the
policies proposed by the candidates in equilibrium converge to the projection
of the point p0(m) on their respective feasible sets of policies. Point p0(m)
belongs to the set of points equidistant from the feasible sets of policies of both
candidates (a bisector of these sets) m. Moreover m must be a median line.
Despite this convergence the policies proposed in equilibrium by both candidates
are indeed different, even in the heterogeneous settings, where feasible sets of
policies of both candidates have non-empty intersection.

6 Conclusions

In this paper we have studied Downsian competition in a two dimensional ideol-
ogy space between two candidates whose sets of feasible policies are restricted by
unidimensional commitment. We have shown that this kind of restriction allows
for existence of Nash equilibria under larger class of distributions than in the
case of unrestricted competition. Moreover we provided necessary conditions
for existence of Nash equilibria where both candidates enter the competition.
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We gave necessary and sufficient conditions together with full characterisation
in the case of convergent Nash equilibria (where both candidates propose the
same policy in equilibrium) as well as in the case of divergent Nash equilibria
under distributions with non-empty core. For distributions with empty core,
we have given necessary conditions for the existence of such equilibria, linking
their existence with the existence of the strict median that depends only on
the distribution. Moreover, we provided examples showing situations where di-
vergent Nash equilibria exist even though the distribution has an empty core.
Interestingly, it is possible to have such equilibria even in the case where feasible
sets of policies of both candidates have non-empty intersection. Two interesting
features of divergent equilibria with two parties are: (a) when the two share the
same committed issue, they tend to have extreme opposite stands on that issue
while agreeing completely on the free issue while (b) when the committed issues
are different for different parties, their final positions in the two-dimensional
space tend to be significantly far apart from each other and truly divergent in
every issue.

We are so far unable to provide properties of the distribution function that
would guarantee existence of the strict median that is closely related to the
existence of divergent Nash equilibria and the interesting research question is
whether the strict median exists for large enough class of distributions.

Another interesting direction of research is to check whether the results
obtained here would extend to more than two dimensions. More precisely, what
would the effect of unidimensional commitment be when the ideology space has
three or more dimensions. It seems that the regions containing ideal points of
loyal voters of the candidates would be multidimensional parabolic quadratic
curves and that existence of divergent Nash equilibria would depend on the
existence of the strict median in d− 1-dimensional hyperspace being a bisector
of hyperspaces of feasible polices of the candidates. It seems also that existence
of divergent Nash equilibria in this setting will remain closely related to existence
of the strict median in the bisector of candidates’ feasible sets of policies, like
in two dimensional case.

We did not address the issue of more than two candidates competing in the
elections or a setting with endogenous entry. These extensions are yet another
interesting direction to explore.

Appendix

Proof of Fact 1. Take any v ∈ R2 and let l = span{v} be the line spanned on
this vector. Since f is non-atomic, so the distribution f projected on l, fl is
non-atomic as well and has unique median. Let x̄ be the median of fl. Then the
line l⊥(x̄) is a median line of f and is perpendicular to v, that is l⊥(x̄) = mf

v.
ut

Proof of Fact 2. Notice that since f is non-atomic, then, by Fact 1, for any
vector v ∈ R2 there exists a unique median line mf

v. Hence there exists a
unique intersection point of all median lines from Mf .

For the left to right implication suppose that Cf 6= ∅ and let x̄ ∈ Cf . We will
show that for all m ∈ Mf it must hold that x̄ ∈ m. For assume the opposite
and let m ∈Mf be such that x̄ /∈ m. Let z̄ be the projection of x̄ on m. Then
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z̄Mx̄, which contradict the assumption that x̄ ∈ Cf . Thus it must be that for
any x̄ ∈ Cf and for all m ∈ Mf it holds that x̄ ∈ m. Hence Cf = {c̄f}, where
c̄f is the intersection point of all median lines.

For the right to left implication we will show that if c̄f is the intersection
point of all median lines, then for all x̄ ∈ R2, c̄fM̄x̄, that is c̄f ∈ Cf . Assume
the opposite and let x̄ ∈ R2 be such that x̄Mc̄f . But this is impossible as
m ∈ D(c̄f , x̄), where m is the median line parallel to the bisector B(c̄f , x̄) of c̄f
and x̄, and so µ(D(c̄f , x̄)) > 1/2 > µ(D(x̄, c̄f )). Hence it must be that c̄fM̄x̄,
for all x̄ ∈ R2, and consequently c̄f ∈ Cf . ut

Proof of Fact 3. Take any m ∈ Mf and any r ∈ R \ {0}. Let x̄ = γm(r) and
let ls(x̄) be the line intersecting m at x̄ and such that the gradient of it with
respect to m is s. Let βmx̄ (s) be the difference between the mass of the right
half plane and the mass of the left half plane defined by ls(x̄). Then βmx̄ is a
continuous function of s.

Let αmx̄,s(d) be the mass of the region between the line ls(x̄) and the line
ls(z̄), where z̄ ∈ m is a point to the right of x̄ and such that δ(x̄, z̄) = d, if
d ≥ 0, or a point to the left of x̄ and such that δ(x̄, z̄) = −d, if d < 0. Notice
that αmx̄,s is continuous and, since f is non-atomic, it is strictly increasing with
d increasing, for any s. Thus its reverse function (αmx̄,s)

−1 is well defined and
continuous for any s.

Observe that δ(x̄, γm(s)) = |(αmx̄,s)−1(βmx̄(s))|. Notice that since r 6= 0, so
lims→r(αmx̄,s)

−1(t) = (αmx̄,r)
−1(t), for all t. It also holds that lims→r β

m
x̄ (s) = 0.

Hence lims→r |(αmx̄,s)−1(βmx̄ (s))| = 0 and so lims→r γ
m(s) = γm(r). Hence γm

is continuous on R \ {0}. ut
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