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Electromagnetic resonator
and filters :

7.1 (a) Parallel and (b) series resonant circuits.
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7.1 INTRODUCTION 12

At radio frequencies tuned circuits are used to provide frequency:
tivity. Resonant elements are used for similar purposes at micro
optical frequencies. They can take many forms but all can be m

fairly accurately by one of the resonant circuits shown in Fig. 7.
impedance of the parallel resonant network (Fig. 7.1(a)) is given b

R

w/wg

Z:

1 - '—R—(l - mzLC)l
YoL ire 7.2 shows how |Z| varies with frequency. The width of the curve is
rmined by the parameter Q in (7.2). The relationship is usually ex-
in terms of the width of the curve at the 3 dB points. If the circuit is
by a constant-current source / then the voltage across it can be

At microwave frequencies the individual circuit components have 1
significance and it is usual to rewrite (7.1) in the form

Z= A * ed in decibels normalized to the peak value as
3 w wy A
T\ — - — Z|I

1 JQ(mo ® ) 20 log;o (%) (7.6)
where "G S expression has a value of —3dB when |Z| = R/y2 and then, from
and 0 = RloyL = wyRC.
To understand what this expression means let us consider separate . @ w )2 _, amn
amplitude and phase of Z. The amplitude is : +0Q g ot '

R

o w)]
reefz-2)
wy w
This expression clearly has a maximum value of |Z| = R when the frequ

dependent term on the bottom line is zero. This occurs at the
frequency of the network given by (7.3). At all other frequencies |Z|

|Z| = € width of the curve is usually small so we can write

w = wy + dw,
te 8w < w,. Then, from (7.7),

w Wq

_——= 1

1
R 5 (7.8)
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so that

- 2 x Stored energy (7.16)
~ Energy dissipated per cycle’
pasic equivalent circuit of Fig. 7.1(a) is defined by the three parameters

7 and C. So far we have only generated two alternative parameters
nely w, and Q. The third is defined from (7.4) as

B

te that the value of (R/Q) is independent of the losses in th(_e re§0nator.
e physical significance of this parameter is revealed by substituting from

14) into (7.15) to give

Expanding the second bracket by the binomial theorem and negle
powers of dw/w, higher than the first gives

or

(6)- = @19

us (R/Q) is a measure of the relationship between the voltage across the

gonator and the stored energy. In free-electron devices such as kl_ystrons
particle accelerators the voltage across a resonator is _uscd to interact

th charged particles. A high (R/Q) means a high interaction V(_)ltage for a
stored energy so this parameter is a useful figure of merit.

To complete our review of the theory of parallel resonant circuits we

st examine the phase of Z. From (7.2) we have

ZZ = arctan [Q(% = i)] (7.19)

Wy

dw = +—

so that the width of the curve at the 3dB points is wo/Q as show
Fig. 7.2. Modern test equipment can display the Iesponse curve as
with the vertical scale in decibels. This makes it easy to measure
factor of a resonator. Equation (7.11) provides a useful definition
Q factor as

Resonant frequency
Bandwidth

Consideration of Fig. 7.1(a) and (7.4) shows that to obtain a high O fa
we must have a high shunt resistance. At radio frequencies resonant
made with lumped components generally have Q factors of the ord
few hundred. Microwave resonators commonly have Q factors of 10
can be made with values as high as 30 000 by careful design and manuf;
From these considerations it is evident that a high Q factor implies
losses and that leads to another useful way of defining Q.

When an alternating voltage V = V, exp jot is applied to the terminal
the circuit shown in Fig. 7.1(a) the stored energy is

0=

1is expression is zero at resonance so that Z is then wholly real as is clear
m (7.2). As w tends to zero the behaviour is dominated by the reactance
the inductor and ZZ tends to 90°. As w tends to infinity the capacitor has
igreater effect and ZZ tends to —90°. This behaviour is summarized in
3. 7.3. The phase reversal at resonance is an important feature of the
haviour of any resonant device.

V7
90° 4

It can be shown that this energy is transferred backwards and forwi
between the capacitor and the inductor during each cycle with the
stored energy remaining constant provided that the voltage at the termil
is held constant. The mean rate of dissipation of energy is

P, = VZ/2R.
Substituting these expressions into (7.4) gives
Q = CIJ[;WEI"PL.

This equation can also be expressed as

51
!

wlwg

=907

8. 7.3 Phase response curve of a parallel resonant circuit.
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is necessary for this wave to be in phase with the wave originally
.I ched at A. The condition for resonance is therefore

(2m — 20) = 0, —2m, —4mx, ..., etc.,

The properties of the series resonant circuit shown in Fig. 7.1b c
revealed by a similar analysis. The impedance of the network is .

= Bl ol ot

jwe '
at is
which can be written i s (7.24)
= jo(— — =2 4 i itive i ine i t whenitis a
2 =RLHio o= here 1 is a positive integer. In other words the line is resonan
& P @ hole number of half wavelengths long. ’
where In the second case shown in Fig. 7.4(b) we recall tljat a voltage wave is
1 flected without change of phase by an open circuit. The phase of the
0 = I/(LC)  and = ave which has been reflected at both B and A is therefore ( — 26). The
@oRC pndition for resonance is therefore
This can be written, alternatively, as an admittance ' Gt BN s S o B
Y= 2 0=(n—Hm, (7.25)
o Wy’ ;
s JQ(E)_ a _0]_) p the line is an odd number of quarter wavelengths long at resonance.
0 )

In the third case the wave is reflected without a change of phase so that

where G = 1/R. Equation (7.23) is mathematically identical to (7.21.: B conance

the conclusions for parallel resonant circuits can be applied to series
onant circuits if admittance is substituted for impedance. Hence a s
resonant circuit has a maximum admittance G at resonance and a p
reversal exactly as shown in Figs. 7.2 and 7.3. }

20 = 2m, 4m;, ..., etc.
0 =nn (7.26)

ing the same frequencies as in the first case. ]
e wave patterns on the lines are given by the sums of waves of equal
mplitudes travelling in the positive and negative directions.

V= Vyexp jlot — kx) = Vyexp j(ot + kx). (7.27)

7.2 TRANSMISSION-LINE RESONATORS

In distributed circuits such as transmission lines and waveguides resol
behaviour is associated with the presence of standing waves. To ill
this consider the three situations shown in Fig. 7.4. Figure 7.4(a) shoy
length of transmission line with short circuits at either end, A voltage ¥
is reflected by a short circuit with 180° change of phase. If a wav
from A with zero phase it has a phase of —6 on arrival at B. The re
wave at B has a phase of (m — 0) which becomes (m — 26) on arrival a
This wave after reflection has a phase of (21 — 28). For resonance to o

he sign of the amplitude of the wave travelling in the —x direction is
hosen so that the boundary condition at A is satisfied. Thus when there is

N Open circuit at A
V = 2V, exp jot cos kx, (7.28)

vhilst with a short circuit at A
V = =2jV, exp jwt sin kx. (7.29)

fthe length of the line is L then the boundary conditions at B are satisfied
0 = kL is given by (7.24) when the two boundaries are the same and by
(7.25) when they are different.

The voltage wave patterns at resonance are therefore

o Z

A BA B

(b) (c) E
Fig. 7.4 Resonant sections of transmission line: (a) short circuit both ends, (b) sk
circuit and open circuit, and (c) open circuit both ends. '

V = —2jV,el* sin (%) (7.30)
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V = —2iVei® g (n — Hnx /2.25 = 0.2 x 10°ms~". For an open circuit at one end and a short circuit
B L  the other the resonant frequencies are given by
j = (n + H(vpn/2L 7.33
and V = 2Veel cos (?%) f=(n+2)(vpn2L) (7.33)

y there are resonances at 50 MHz, 150 MHz and 250 MHz. Similarly when
‘ere are short or open circuit terminations at both ends the resonant

for the resonators shown in Fig. 7.4(a), (b) and (c), respectively, ;
zquencies are

n =1, 2, 3, etc. Note that these are all standing waves, not
waves. o
This discussion highlights one important difference between a lun
element resonant circuit and a distributed resonant circuit. That is
distributed resonant circuit has not one but an infinite set of reso

Figure 7.5 shows the voltage wave patterns for the lowest three resor
modes of the lines in Fig. 7.4.

f=nvy2L (7.34)

ving resonances at 100 MHz, 200 MHz and 300 MHz.

is example makes the point that the lowest resonant frequencies of the
ths of cable commonly used in the laboratory are well down into the
'HF and UHF regions. Thus if care is not taken with making correct
srminations it is possible for resonances in circuits to be troublesome at
gite low frequencies. It must be remembered that the sets of resonant

Example equencies are infinite so resonances can be detected in all higher-frequency

Calculate the three lowest resonant frequencies for a 1 metre len;
of polythene insulated coaxial cable with both open- and short-c

terminations.
e current waveform corresponding to (7.27) is given by
Solution = Y eilor—kx) 1 Y ellr + kx) (7.35)
Zy 0 ’ '

The relative permittivity of polythene is 2.25 so the phase velo
here the reversal of the sign of the second term is necessary because the
irrent in the wave travelling in the negative x direction must be opposite
‘that for the wave in the positive x direction. The current patterns corre-

v v sonding to (7.30) to (7.32) are therefore
’.r//" S ; Fid '\\\ ’;f;-/k;: N c ’.f 2V[) e nIx
I | ) 7 o el
,;/ \ \\ / \ ’5, g \\ r," I= T € Cos 7 (?36)
\‘ \ 1] ! X \\ & i
) \ fi L Y N T
\n % ;’ ff \ \f;‘ 2]/0 . [(n . %)th:|
Voo k A I=—¢e“cos | ——— 7.37
‘\\\ ,;h\\ /// \\\ ;‘; \\\ ZO € S L ( )
(@) - (b) - 1 =2iWs: . nITX
[ = 2170 gior gip (—) (7.38)
v Zy L

Ote that the currents and voltages are in phase quadratuie in time implying
at there is no net power flow in the resonator, also that they are in phase
Badrature in space so that a voltage maximum corresponds to a current
and vice versa. This must be clearly distinguished from the situation
a propagating wave where the current and voltage are in phase.

he voltage and current patterns are associated with distributions of the
€ctric and magnetic fields around the line. Figure 7.6 shows how the field
dtterns change during one cycle. One way of thinking about this process is
) Imagine a static charge distribution set up as shown in Fig. 7.6(a). This

(c)

Fig. 7.5 Voltage standing waves for the lowest three resonances of each of
resonant transmission lines shown in Fig. 7.4.
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ie. 7.7 Equivalent circuit of a parallel resonant circuit capacitively coupled to a
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7.8 Microstrip resonators: (a) end-coupled, (b) side-coupled, and (c) ring

e+
|+
[
| f—i4

(c)

]
e
=
I
El

( ® ®6
®

@O
(d) (|®9® ® ®@E

Fig. 7.6 Resonant section of coaxial line showing the fields, currents and charge
different times during the r.f. cycle.

wt = 3m/2

distribution has an electric field associated with it as shown. The a
ment is unstable and so the positive and negative charges move t
each other producing currents and magnetic fields as shown in Fig.
Because the electrons possess inertia they overshoot producing a &
charge distribution as in Fig. 7.6(c). This in turn is unstable and the cye
continued. '

So far we have assumed that the voltages and currents necessary
sustain the oscillation exist without saying how this might be achieved.
resonator shown in Fig. 7.6 is closed and ohmic damping would reduc
magnitude of the oscillation to zero over a few cycles. It follows that ¢
resonator must be coupled to an external power source if sustained 0
tion is to occur. The amplitude of oscillation excited is then just that |
which the losses exactly match the incoming power. '

Figure 7.7 shows a resonant circuit excited from a source of impedat
Z, through a coupling capacitor. At resonance the impedance of the r¢
onant circuit is just R and the output voltage is

1 (Rzn)
- 7.40
O wol \R + Z,/’ (J40)

there Z, is the impedance of the external loading of the resonator. Since
ne of the main uses of resonators is to provide frequency selectivity it is
ly undesirable to allow the Q to be degraded in this way. Thus the
oupling between the input line and the resonator is usually weak and X is
orrespondingly large.

The circuit of Fig. 7.7 is equivalent to the microstrip resonators shown in
lig. 7.8. The straight resonators shown in Figs. 7.8(a) and (b) must have
engths slightly less than half a wavelength to allow for the effects of fringing
iscussed in Section 6.2. The ring resonator must have a perimeter equal to
one wavelength. The ring resonator has the advantage that it has a higher
D factor because it does not have the radiation losses which occur at the
free ends of the straight resonators. A fuller discussion of microstrip res-
dnators is given by Edwards (1981).

RZ,1, e - Coupling into the coaxial-line resonator shown in Fig. 7.6 can be achieved
Vou = Zo+ R +ijX (- OY means of an electric dipole at its mid-plane or a magnetic dipole at the

end. These could be either wire or aperture dipoles. Figure 7.9 shows
upling arrangements with wire dipoles. The electric dipole (Fig. 7.9(a))
Placed at the plane of maximum electric field for optimum coupling. The
€Quivalent circuit of this arrangement is as shown in Fig. 7.7. The magnetic

using the current-splitting rule. The amplitude of the output voltaj
greatest when X = 0 but then Z appears in parallel with R lowering the
of the resonator. The loaded Q of the resonator is N
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Fig. 7.9 Coupling into a coaxial-line resonator: (a) via the electric field, and (b) y
the magnetic field.

a

Fig. 7.11 Rectangular resonant cavity.

© where [ = 1,2, 3, etc. Substituting this into (7.41) we find that the resonant

frequencies are given by

1

el R v~ I o B
Vph a b o
where vph is the phase velocity of TEM waves in the medium filling the
veguide. When the field patterns of these modes are analysed it is found

the electric and magnetic fields are in phase quadrature in both time
d space exactly as in the case of the coaxial-line resonator discussed
¢. The field patterns for a few of the lower resonant modes are shown
ig. 7.12. The notation for these resonances is a bit tricky because it
nds upon which direction is taken as the reference direction. For
ample the mode shown in Fig. 7.12(a) could be described as, for example,
o11 of TM ;0. It is useful to acquire the ability to sketch the field patterns
ifferent possible resonant modes of a cavity. It helps to think of the
etic field as being generated by the displacement current associated
the electric field but it has to be remembered that they are in phase
uadrature.
e fields of the lowest resonance of an air-filled cavity are given by

Fig. 7.10 Equivalent circuit for inductive coupling to a parallel resonant cir i

dipole (Fig. 7.9(b)) is placed in a region of high magnetic field. The equ
alent circuit of this arrangement is shown in Fig. 7.10. The strength o
coupling is adjusted by changing the size of the coupling loop or by tur
so that it intercepts less of the flux circulating in the resonator. Either
these is equivalent to adjusting the mutual inductance M in Fig. 7.10.°
couple selectively into a higher-order mode of the resonator the dipols
moved to a position which corresponds to a field maximum for that mog

7.3 CAVITY RESONATORS

We have seen in Chapter 2 that metallic waveguides can be trea
transmission lines. It follows that resonators can be made out of 8
circuited sections of waveguide. Open-circuit terminations are impos
to realize because an open end of waveguide radiates too well. F
moment let us consider only TE modes in the rectangular waveguide
in Fig. 7.11. The electric fields for these modes are given by (2.60) ;

(2.61). The z variation is as exp j(wt — k,z), where E, = E, sin (ﬂ) G (“_;)ejmr (7.44)
a
nm\? (m:rt)2
—) +|5) +E=k S _
( a ) b S H, = i sin (EZ) oS (ﬂ—cz)e‘“" (7.45)
2 WL a

(equation (2.63)). When the ends of the waveguide are closed by L_L”
walls separated by a distance ¢ the boundary conditions in the z directi B —jnky o (ﬂ) i (ﬂ) jor (7.46)
require that T oya a ¢

kye = Iz, Ntegrating the square of the electric field gives the stored energy as

I CAVITY RESONATORS | [ 169



B T T T —
| 170 [ ELECTROMAGNETIC RESONATORS AND FILTERS

(@) l - (b) ‘

" EFFECT OF RESONANCE ON SCREENED ENCLOSURES 1

(b)

Fig. 7.13 Cylindrical resonant cavities: (a) pill-box, and (b) re-entrant cavities.

(—g—) = 188.1 % (7.50)

1t is not possible to obtain exact analytical solutions for circular re-entrant
cavities. Design curves are given by Saad (1971) and useful approximate
formulae by Fujisawa (1958).

For more complicated cavity shapesit is necessary to make use of computer
‘modelling techniques. Examples are the programs SUPERFISH (Halbach
and Holsinger, 1976) and URMEL (Weiland, 1983) for cylindrically sym-
‘metrical cavities and MAFIA (Weiland, 1985) and TLM (Akhtarzad and
Johns, 1975) for general three-dimensional cavity geometries.

- In general, computations of cavity Q factors assume that the losses are
small so that the current distribution in the walls is the same as that for a
lossless cavity. The energy loss per cycle and the stored energy are com-
ter by integrating the current and field distributions and Q is calculated
m (7.15). At microwave frequencies the surface roughness is often com-
able with the skin depth so the Q of a cavity depends upon surface finish
well as on the material from which the cavity is made. It is then necessary
to use figures for surface resistance determined by experiment.

~ Coupling into cavities is achieved by using electric or magnetic dipoles
arranged to couple to field maxima within the cavity exactly as in the case
the coaxial cavity discussed above. Figure 7.14 shows coupling from a
‘waveguide to a cavity through an iris which acts as a magnetic dipole

.

coupling element.

& .
We = ) abc E3, @

whence the (R/Q) of the mode is, from (7.18),

(-4
o) "= Vs (74
(@ + )’ it
;Il;he previous discussion has concentrated on rectangular cavities bcca?
evey atr]f easiest to analyse mathematically. It must be remembered ?"
o ft‘]er3 at any closed conducting box will behave as a resonator w‘ith a
Bt \?élte nulllnber' of resonant modes. In general the lowest mode will ha e
n-lens_engtf which is qf the same order of magnitude as the longest
Fi _;0113 0 th_e box. Circular ‘pill box’ and re-entrant cavities as shown i

g. /.15 are In common use. An analytical solution for the pill-box cavit}

can be obtained in terms of Bessel functi i s
ct
resonant frequency is given by et

7.4 EFFECT OF RESONANCE ON SCREENED ENCLOSURES

We have already noted that electromagnetic power can be coupled into a
‘screened enclosure through any small holes in the screen. The effects of

such coupled power are made much worse if it happens to excite one of the
esonances of the enclosure.

kor = 2.405. Example
The (R/Q) depends onl .

(7.6) using y on the cavity geometry. It can be computed fron

the exact solution for the electric field distribution. The result i Estimate the screening effectiveness of an aluminium box 1.0mm thick

“Whose dimensions are S0mm X 100mm X 200 mm at its lowest resonant
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Vo= E, x 0.05
= (ZRP)%. (7.55)
. the electric field strength at the centre of the resonant cavity is
Egr = 3274)P. (7.56)

paring (7.54) and (7.56) shows that the effect of the resonance is to
duce a substantial increase in the peak value of the electric field inside
the box. The reduction in screening effectiveness is

Er

Sg = 20 logyo = 21.5dB (7.57)

Fig. 7.14 Coupling from a waveguide to a resonant cavity via an iri : .
£ PRI iving a final figure of 12dB for the estimated screening effectiveness of

box at this frequency.

frequency if there is a hole Smm in diameter in one side of the be

Assume:that the O'of the resonants i.500. . The size of the box in the preceding example was chosen to be typical of

the kind of enclosure commonly used for electronic equipment. The lowest
resonant frequency is high enough to cause little trouble unless the circuit
nclosed is a microwave circuit. However if the box were larger, or if the
rcuit were encapsulated in epoxy resin the frequency would come down
to the region of operation of high-speed digital circuits. In that case
box would screen the circuit very imperfectly from external signals at
resonant frequency. In addition, if the resonance were excited by the
ration of the circuit itself at either the fundamental or a harmonic
uency, there could be strong cross-coupling effects within the circuit.

Solution

The lowest resonant frequency of this box is given by (7.43) with m = n = |
and/ = 0. The result is 1.68 GHz. At this frequency the screening effe
ness of the enclosure without holes in it is very high. y

The screening effectiveness of the enclosure can thus be calculated or
the leakage through the hole using (6.16), (6.19) and (6.25) so that

A,=27.3(1/5) =5.5dB (7.51 This is why circuit designers must have an understanding of electromagnetic
: theory.
R, = —20log,, (gX_S) =25.1dB (7.52 For much larger enclosures such as screened rooms there will be many
179 higher-order resonances close to typical operating frequencies of electronic
and B, = —20 log;o(1 — 1075%) = 2.9dB . ircuits. It is therefore necessary to ensure that these resonances are excited

as weakly as possible by equipment within the room.
so that § = 33.5dB. We recall that this is the ratio of the signal level insidk

the box to that which would exist if the box were not present. This fig
assumes that the box is not resonant. If the power leaking into the box
(assumed to be spread uniformly over the cross-sectional area of the box
then the mean electric field strength is

[ 2PZ, ]
Eﬂ =]
(0.05 x 0.2)

= 275/P. (7.54)

When the box is resonant the power is dissipated in the losses in the wa .
For the dimensions given (R/Q) = 26.8 from (7.48) so that R = 26.8 X
500 = 13.4k<Q. The voltage across the box is therefore

7.5 DIELECTRIC RESONATORS

In Chapter 3 it was demonstrated that strips and rods of dielectric mate-
al can act as waveguides. It follows that isolated pieces of dielectric may
e expected to behave as resonators. One simple way of making a dielec-
ic resonator is to place a section of dielectric rod waveguide between
wo parallel conducting planes. These act as short circuits and the lowest
fesonant frequencies can be worked out if the dispersion curve for the
Waveguide can be measured or calculated. If the relative permittivity of
material is high then (3.4) shows that signal is strongly reflected at
air—dielectric interface. For example titanium dioxide has a relative

bal—
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permittivity of 90 so the reflection coefficient of a TEM wave incj .
normally on the boundary from within the material is

y90 — 1
Q= s
190 + 1

Thus it is possible to make a resonator out of such a material without a
conducting boundaries. Note that (7.58) shows that the reflected wave is
phase with the incident wave so that, to a first approximation, the interfa
behaves as an open circuit. In‘order to achieve a reversal in the direction
the Poynting vector the direction of the magnetic field must be reversed
the boundary. That therefore behaves approximately as a magnetic
circuit or ‘perfect magnetic conductor’.

If the approximation is made that the dielectric is bounded by a perfe
magnetic conductor then the solution is obtained from that for a me
resonant cavity by interchanging the roles of the electric and magnel
fields. In particular for a cylindrical piece of dielectric the lowest resona
mode has an axial magnetic field and a tangential electric field as sho
Fig. 7.15 by analogy with the pill-box cavity in Fig. 7.13. The frequency
this mode is then given by (7.49) with k, replaced by k; = k)., givin

0.115
fGHz e rVSr . (‘}‘-‘)

ability. The frequency of a metallic cavity resonator decreases with in-
easing temperature as the cavity expands. Dielectric resonators likewise
«nand as the temperature increases but the relative permittivity is also
,quency dependent. For a material such as barium nanotitanate the rela-
permittivity decreases with temperature at a rate which almost exactly
ympensates for the thermal expansion. This is particularly useful for
aking stable local oscillators and narrow band filters.

The theory given above can only be approximate because, as (7.58)
Jows, the assumption that the boundaries are perfect magnetic conductors
- not strictly correct. A full theory must include the effects of the leakage
ds outside the dielectric. These are two-fold. First they modify the re-
nant frequency and, secondly, they result in a loss of energy by radiation
» lowering the Q of the resonator. The field pattern around the resonator
, in practice, as shown in Fig. 7.15(b) so that it behaves as a magnetic
inole radiator. This is the mode commonly used in dielectric resonators.
t is referred to as the TEy;s or ‘magnetic dipole’ mode. An empirical
ula for the resonant frequency obtained from numerical solutions is
rom Kajfez and Guillon, 1986)

0.81. (z-

_0.034 (

r
i (1 3.45). 7.60
GHz rVEr ( )

h

formula is accurate to within 2% for 0.5 < r/h < 2 and relative per-
ittivities in the range 30 to 50.
"The Q factor of an isolated dielectric resonator is about 50 because of
adiation losses. If the resonator is placed within a conducting shield these
s are dramatically reduced and Q factors around 5000 can be achieved.
ecause in a typical case 95% of the stored electric energy and over 60% of
he stored magnetic energy are within the dielectric the resonant frequency
4 termined largely by the dielectric so it is insensitive to small changes in
! ie dimensions of the shield.
‘The leakage of magnetic flux from the resonator provides aconvenient way
f coupling it to a microstrip line. Figure 7.16 shows a typical arrangement.
It must be remembered that a dielectric resonator like any other dis-
tibuted resonator has an infinite set of resonant modes. Sometimes these
an be troublesome. For example Fig. 7.17 shows a simple form of wave-
Juide window. Windows are used to enable microwave power to pass from
Airinto vacuum in vacuum electron devices. Simple transmission-line theory
s that the window shown will be transparent at the frequency at which
s half a wavelength in thickness. The dielectric would usually be alumina
ich has a relative permittivity of 8.9. Whilst this figure is not as high as
e for materials designed for use as dielectric resonators it is still high
ugh for dielectric resonances to occur. The shielded arrangement of the
lelectric means that these modes can have quite high Q factors and be

Thus a titanium dioxide resonator is smaller than a cavity resonator ha
the same resonant frequency by a factor of Y90 = 9.5. Dielectric reson:
are therefore much more compact than corresponding cavity reson
They can be made with low loss and therefore high Q compared wi
microstrip resonators. k.

An important advantage of dielectric resonators is their temperatul

(a)

[EE——— 1

—_——— -

Fig. 7.15 Dielectric resonators: (a) approximate fields, and (b) the correct fiel
pattern. M
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~~— substrats fig. 7.18 Fabry-Pérot resonator.

nance occurs when the waves are travelling normal to the surfaces and the
ondition for resonance is

d = ni/2. (7.61)

the surfaces are made so that the reflection is not quite perfect then it is
ible to couple power into and out of the resonator. At microwave
uencies this could be achieved by using wire grids or thin conducting
s evaporated on to dielectric surfaces. The former arrangement pro-
s the possibility of making resonators which select one polarization of
wave. At optical frequencies the partial reflection is achieved by the
se of thin films.

- Fabry—Pérot resonators are used in lasers and are also important as a
vay of making accurate optical filters.

Fig. 7.16 Coupling from a microstrip line to a dielectric resonator.

FILTER THEORY

onators are important because of their ability to select and reject fre-
ncies. This property finds particular application in the fabrication of
1s. A filter is a device which passes a band of frequencies whilst blocking
1 frequencies. Figure 7.19 shows the idealized transfer functions of the
bur possible types of filter. These are respectively, low-pass, high-pass,
and-pass and band-stop filters. Their uses include the suppression of har-
1onics and the selection of bands of frequencies in frequency-domain
hultiplex communication systems. The theory of filters including tech-
iques for their synthesis is a major subject in its own right. Here we shall
Centrate on the links between filter theory and the properties of trans-
ion lines and resonators already discussed.
‘At low frequencies filters can be realized using lumped inductors and
pacitors. Figure 7.20 shows examples of lumped-element low- and high-
filter networks. The way in which these work can easily be understood
is remembered that an inductor has an impedance which is zero for d.c.
0d which increases with frequency. Similarly, a capacitor provides a total
dock to d.c. but has a decreasing impedance as the frequency increases.

Fig. 7.17 Half-wavelength waveguide window.

only weakly coupled to the wave in the waveguide. They are quite diffie
to detect and are therefore known as ‘ghost modes’ (Forrer and Jayni
1960). If one of these modes occurs within the operating frequency band
the window appreciable power can be dissipated by it, thus giving
unwanted heating and possible destruction of the window.

7.6 FABRY-PEROT RESONATORS

3
A particularly simple form of resonator for TEM waves can be made |
arranging a pair of plane reflecting surfaces parallel to each other as )
in Fig. 7.18. This arrangement is known as a Fabry-Pérot resonator. R
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T(w) T(w) : a Butterworth response and

1
1+ kzri,(mﬂ)

0

TP = (7.63)

- a Tchebychev response by a suitable choice of the component values. I'n
e expressions k is a parameter which defines the minimum loss within
passb&l‘ld of the filter, N is the number of components in the network,
is the Tchebychev polynomial of order N and w, is given by

wo = 1/Y(LC). (7.64)

s also necessary to ensure that the component values are chosen so that
s filter is matched to the source impedance within its pass band.

A high-pass filter can be derived from a low-pass filter by the trans-
mation

(a) (b)
T(w) Tw)

(c) (d)

Fig. 7.19 The four ideal filter characteristics: (a) low-pass, (b) high-pass, () ba
pass, and (d) band-stop filters, :

L. | (7.65)
Wy w
L L L ! : 5
o J_ YL _J_ YL l NW-\T—Q us in Fig. 7.20 the series inductance L in Fig. 7.20(a) transforms to
2
1c T c T c 1c Y. N (7.66)
o T T 5 o joC

ere C is the corresponding shunt capacitance in Fig. 7.20(b).
e 7.21 shows typical transfer characteristics for a pair of low- and
1-pass filters designed in this way.

O
e}
9}

T [l [ _ ;
© i I T °18 3and-pass and band-stop filters can also be derived from a low-pass filter
r the transformations
2L L L 2L ] 1
® @ (2 _ ﬂ) (7.67)
wy Wy — Wy \g w
o= 0

(b)
Fig. 7.20 Filter networks: (a) low pass, and (b) high pass. T2
T(w)

Thus the low-pass filter shown in Fig. 7.20(a) provides no obstacle to ¢
At high frequencies the passage of current is blocked by the inductors ¢
a low impedance path to ground is provided by the capacitors. It can
shown (Jones and Hale, 1982) that the transfer function of the netws
shown in Fig. 7.20(a) can be designed to have the forms

1
(1 + k3) 1

1 w/w
A 0 ]
|T(w)] o ; ﬁ j
At wy 7.21 Transfer characteristics for ow-pass and high-pass Tchebychev filters.
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' 0 o
20 zU
o— L= ‘-
(a) i

(a) (b)

: 7.23 Transmission-line filter elements: (a) short-circuit stub, and (b) open-

1

= 7.70
jYo tan 6 620

i
quu °
=f=

i T

r the open-circuit stub. Thus the inductors and capacitors of the low-
gency networks can be replaced by short- and open-circuit stubs, re-
ively. Tan 6, which is frequency dependent, takes the place of w. This
ces one important difference between microwave filters and lumped-
ent filters. Tan 6 is periodic in o so there is a succession of frequencies
jich a stub will behave as a short circuit or an open circuit. At inter-
iate frequencies the roles of the stubs are reversed. The result of this is
low-pass network has a succession of higher-order pass bands with
bands between them. Figure 7.24 shows the stripline analogue of the
pass network shown in Fig. 7.20(a). The transfer factor of this filter is
in Fig. 7.25. The filter shown in Fig. 7.24 is impossible to realize
use of the difficulty of making the shunt stubs and because of the need
¢ a finite distance between the points at which the stubs are connected
ther. The solution to this problem is to make use of the impedance
sformation properties of the main transmission line to allow all the
nts to be open-circuit shunt stubs.

(b)
Fig. 7.22 Filter networks: (a) band pass, and (b) band stop.

s NN [_&_ (2_9&)]‘1,
Wy Wy — Wy Vo w
where w, and w, are the upper and lower limits of the pass or stop bz
and wg = J(w,w,). The second term in each of these expressions is famil
from equations (7.2) and (7.21) so it is not unexpected that these two filt
incorporate resonant elements. It can be shown that the transformati
replace the series inductors of the low-pass filter by a series resonant cir
and the capacitors by parallel resonant circuits to obtain the band
network shown in Fig. 7.22(a). Exchanging the series and shunt r
circuits produces the band-stop network shown in Fig. 7.22(b). Once ag;
it is possible to understand how these networks work if it is recalled t
the shunt and series resonant circuits have maximum and minimum i
pedance respectively at resonance.

7.8 TRANSMISSION-LINE FILTERS

Transmission-line filters are usually realized in microstrip or suspend
substrate stripline. For convenience the discussion here will assume fl
microstrip is being used.

The basic elements from which stripline filters are made up are the sh o
and open-circuit stubs shown in Fig. 7.23. It is easily shown that the inp
impedances are

RN
N

Z = jZ, tan 8 (7.6

for the short-circuit stub, where 6 is the electrical length, and Fig. 7.24 Stripline analogue of the low-pass filter network shown in Fig. 7.20(a).
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[T(w)]? #
Z Z Z, Z
k- (a)
o 1
/ ' ' =+ ¢ s
0 m/2 T 3n/2 2
Fig. 7.25 Periodic frequency response of a Tchebychev low-pass filter realiz I } 2o

stripline.

(b)

0—45%‘] I %]AH—o
(c)

5. 7.26 Microstrip filters: (a) stepped-impedance, and (b) parallel-coupled band-
ss filters with (c) the equivalent circuit of the latter.

The theory of a simple filter comprizing a series of reflecting eleme
separated by equal electrical lengths 8 can be understood by reference
the discussion of broadband matching in Section 6.7. There it was §
that, for small reflections, the reflection coefficient of the set of reflecti
01, 02, 02, @; could be written

lo| = [801x® + 2(02 — 301)x|

(equation (6.3)) where x = cos 0. It was also shown that this could
into the form of Butterworth or Tchebychev polynomials by a sui
choice of ¢, and g,. Now the power reflected by this device is given [

-~ ,
el 9 WAVEGUIDE FILTERS
e t power levels above a few watts it is necessary to use waveguide tech-
i 1 - logy to make filters. The approach used is essentially the same as in the
B o se of transmission lines. _ _
1 Figure 7.27(a) shows a section of waveguide with a resonant section
1+ o]? tmed by two transverse walls at A and B. These walls have small coupling

ses in them. An incident wave in the waveguide is almost complett?ly
flected at A producing a standing wave in the wavegmde. "I‘l_le tangential
agnetic field therefore induces a magnetic dipole in the iris at A. The
1d of this dipole at the iris at B is negligible unless }he cavity is resonant.
nder resonant conditions the field of the cavity excites the iris at B which
en radiates power into the output waveguide. This_ arrangement therefore
ts as a band-pass filter. Provided that the coupling irises are small the
operties of the cavity are not affected by loading by the 1nput‘and output
veguides and the transfer characteristic of the filter is essentially that of
g. 7.2. _

| e%}roblem with this kind of filter is that the transmission loss is rather
rge because of the bad mismatch at A. If the irises are enlarged to
lerease the coupling then the input and output guides load the cavity
*ducing its Q factor and possibly tuning its resonant frequency.

which can be expressed in the forms given in (7.62) and (7.63). A W
similar result could be obtained by using a stepped impedance transforn
as shown in Fig. 7.26(a). Another possible filter configuration is the pa
coupled band-pass filter shown in Fig. 7.26(b). Each of the sections of |
behaves as a parallel resonant circuit since there is a voltage maxim
at its ends when it is resonant. The coupling between the elements
capacitive so the device has the equivalent circuit shown in Fig. 7.
Comparison between this circuit and that in Fig. 7.22(a) shows that
filter must be a band-pass filter. All these filters are examples of filters W
periodic structures. _:

The design of microstrip filters is a major subject in its own right and
reader should refer to specialized texts (Matthaei et al., 1964) for furth
information.

N WAVEGUIDE FILTERS ][ 183
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o 7.28 Multi-cavity waveguide band-pass filter.

O
| | |9 50
(@) ————— Displacement current
—— Conduction Current
]I[ =]l[1 gji
| | O )
(b)

i i in the filter shown in Fig. 7.28
g. 7.29 Conduction and displacement currents in t ; ]
) at zero phase shift per section, and (b) at 180° phase shift per section.

—_——————
———————

e
—————

L1 — 2K)

e i

i

-———— e —

(b)

Fig. 7.27 Iris-coupled waveguide band-pass filter: (a) general arrangeme
(b) equivalent circuit.

‘The equivalent circuit of the filter is shown in Fig. 7.27(b). The irises
represented by parallel LC circuits because there is inductance associ
with the flow of current around the hole and capacitance associate
the displacement current across it. The cavity inductance L, is divide
three parts because not all the circulating current in the cavity is inter
by the irises. The resulting equivalent circuit clearly has a band-pass cha
teristic as can be seen by comparing it with Fig. 7.22(a).

In order to control the transfer characteristic of the filter several ¢z
may be connected in series as shown in Fig. 7.28. The behaviour
arrangement can be understood by considering the extreme cases w
cavities are resonating in phase or in antiphase with each other. Fig
shows how this happens. In Fig. 7.29(a) the cavities are excited in
with each other. The conduction currents in adjacent cavities are ¢
the irises in the same directions. The irises being small are well below:
lowest resonant frequency so they present an inductance to the curte

his inductance is in series with the cavity inductance so it has the effect of
”ering the resonant frequency a little. When the cavities are ex_c1_ted in
tiphase (Fig. 7.29(b)) the conduction currents flow across the irises in
osite directions. There is, therefore, no net current flow across each
and the resonant frequency is unperturbed. F_or other possnble_ phase
nges there is an intermediate situation so the m:phase_ and ant1-pha§ei
ditions represent the edges of a band of frequencies which the filter “:’ll
s. Careful design of the sizes of the irises and of the resonant frequencies
f the cavities can produce either Butterworth or Tchebychev character-
tics | s band.

i'l'h;nﬁlttl:; gl?cs)wn in Fig. 7.28 also has a series of higher-order pass bands
orresponding to those higher-order modes of the cavities which couple to
€ irises. Thus a filter comprising a series of weakly coupllef:l cavities l‘las
arrow pass bands separated by broad stop bands. In describing the action
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w
Strong
coupling

______ Weak
coupling

Substrate

Phase change Dielectric resonators

. 2x  per cavity
Fig. 7.30 The dispersion diagram of the filter shown in Fig. 7.28.

Microstrip
. 7.32 Band-pass filter using dielectric resonators.

1(a) the electric field maxima coincide with the obstacles. For this mode
‘capacitance is reduced and the frequency is slightly higher than in the
serturbed mode. In the second case (Fig. 7.31(b)) the magnetic field is
turbed producing an increase in the effective inductance and a slight
ion in the resonant frequency.

have therefore demonstrated, both from the point of view of coupled
ators and from that of perturbed waveguide modes, that periodic
of discontinuities in a waveguide produce alternate pass and stop
whose widths depend upon the magnitudes of the discontinuities.
tripline filters have the disadvantage that it is difficult to get very high
ses of 0. The theoretical behaviour is therefore limited by the inherent
ndwidths of the elements from which the filter is made up. One solution
his is to make use of dielectric resonators as shown in Fig. 7.32. The
onators are inductively coupled just like the cavities in Fig. 7.28. The
er has a band-pass characteristic.

of the filter in this way we have approached the general problem -.
coupled resonator filter from the point of view of weak coupling. The s

the o_bstacles i_s a half wavelength. The cumulative reflections set
standing wave in the guide and any general standing wave can be reg

as the superposition of the two ‘normal modes’ shown in the figure. In B

@@@@ ® ® ®
@ © ® ® ® ® ®

10 OPTICAL FILTERS

toptical frequencies filters can be made by using Fabry—Pérot resonators.
series of layers of transparent dielectric separated by thin metallic films
layers of a different dielectric has the equivalent circuit shown in

T e sl
= | 2 | & | & | 2 | &2 | &

K74 77 27 M el Sl T S
1881118811188 R AR ACRACRACH|

b /2N R
(b) 2 Y /25 [ | | | | |

8. 7.33 Equivalent circuit for an optical filter employing layers of different di-
=Ctric materials.

Fig. 7.31 Fields in the filter shown in Fig.

7.28 at th
when the phase change per section is 180°. 7 fhe o edges of the S
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Fig. 7.33. This periodic structure has alternate pass and stop bands ey
like those discussed in the preceding sections. By careful choice gf
filter dimensions it is possible to ensure that all the pass bands excep
lie outside the visible spectrum. This filter is a band-pass filter. Fy
details can be found in books on optics (Longhurst, 1973). '

‘magnetic wave having a power density of lmWm™"' at the frequencly
of the lowest resonance of the box. If the Q factor of the resonance is
9() estimate the screening effectiveness at this frequency.

Calculate the dimensions of a pill-box dielectric resonator made of
‘parium titanate (¢, = 1200) if the resonant frequency is 9.5 GHz and

the radius is twice the height.
7.11 CONCLUSION

In this chapter we have considered how resonant structures are mac
transmission lines and waveguides. It has been demonstrated that .
structures can be described in terms of lumped-element equivalent cir
with the difference that distributed structures can support infinit
higher-order resonant modes. Resonant circuits are important be
their frequency-selective properties. These can be enhanced by com
resonant circuits into filter structures. The four basic filter types (1
high pass, band pass and band stop) can all be derived from a 1
filter. Filters can be designed in both transmission lines and wav
from lumped-component, low-frequency, models. Certain chan
necessary in order to adapt the designs to the particular technolg
which they are to be realized.

Most filters have a periodic structure and exhibit alternate pass a
bands. The pass bands get wider as the strength of the coupling
the elements of the filter increases. This behaviour can be und
either by considering the perturbation of waves by regularly spa
continuities or by considering the behaviour of weakly coupled reso

EXERCISES

7.1 Calculate the equivalent circuit parameters for a microwave
which resonates at 3.40 GHz with a Q of 600 and an R/Q of
Find the amplitude and phase of its impedance at 3.38G
3.43GHez.

7.2 Calculate thelowest three resonant frequencies of a 75 Q semi-airs ,
coaxial cable (g, = 1.06) used as the downlead from a television ante
if the cable is 15m long.

7.3 Calculate the loaded Q and the bandwidth of the resonator of Quest
7.1 when it is connected to a 10kQ load. i

7.4 Calculate the lowest three resonant frequencies of a rectangular ca
17mm X 21 mm X 12mm. What are the new frequencies if the bo
completely filled with epoxy resin (e, = 3.5)?

7.5 A rectangular metal box 510mm x S50 mm X 126mm which ha
screening effectiveness of 120 dB is illuminated uniformly by an eled!



