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Antennas

TRODUCTION

ler 1 we saw that electromagnetic waves can propagate through a
dielectric medium whose boundaries are so far away that they can
. The subsequent chapters examined the effects of boundaries
ropagation and, in particular, the properties of waves guided by
sion lines and waveguides. In this chapter we consider how waves
pace can be excited by waves in waveguides and vice versa. Essen-
s is a problem of matching between the two media of propagation
vice which performs that function is called an antenna. Antennas
iar objects in the modern world with its multitude of radio and
sion aerials (the old word for antennas) and the growing number of
for receiving satellite transmissions.

AGNETIC VECTOR POTENTIAL

oceeding to the theory of antennas we require one new idea: the
tic vector potential. In elementary textbooks (Carter, 1986) it is
that the electric field can be calculated from the electrostatic potential

E=-VV (5.1)

av av av
VW==x o + y 3y +Z oz
“langular Cartesian coordinates. Equation (5.1) can also be interpreted
I coordinate systems as we shall see. Now (5.1) was derived from
Ory of electrostatics but it cannot be correct for problems involving
agnetic waves because it neglects the part of the electric field
d by a changing magnetic field. To get round this problem we
4 new vector A, known as the magnetic vector potential, by

(5.2)
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ic 2 wave equation relating the components of A to the corresponding
nents of the source current.
milarly, taking the divergence of (5.6) we have

B=VAA.

It may be recalled that the magnetic scalar potential defined by an equa
analagous to (5.1) is of limited value because it is not a single-va
function (Carter, 1986, p. 56). Substituting (5.3) into (1.8) gives Ve v 9 (V-A) = ole

- ot SR

2

d
el V2V — gl == = —0leo (5.12)
or?
so that
ison of (5.11) and (5.12) shows that A bears a relationship to cur-

VA (E + %) = 0. urces very similar to that borne by V to charge sources.
t

Now suppose that the quantity in the brackets is equal to min AETARDED POTENTIALS

gradient of the electrostatic potential V. Then
0A

E =NV — —,
ot

s (5.11) and (5.12) express the idea that if a current or a charge is
ng with time the effect travels outwards with the speed of light. Thus
> examining the electrostatic potential at a point P distant r from a
O the potential at time ¢ will depend upon the value of Q at the
me (¢ — r/c). This value of the charge is referred to as the retarded
nd is denoted by [Q]. Using this notation the solution of (5.12) can

This equation, therefore, replaces (5.1) and reduces to it when the p
lem is a static one. The substitution of VV is justified because it cal
shown that

VA(VV)=0.
When (5.3) is substituted into (1.7) the result is

oD
VA(VAA) =l + o~

2o 1 191
e (5.13)

rated over the space containing the charge to give

v=4—i€—0m[%]av, (5.14)

¢ the distance r ranges over the volume v as the integration is carried

where, for simplicity, it has been assumed that only fields in free spa
to be considered. It can be shown that the left-hand side of this equé
can be rewritten

V A (VAA)=V(V-A) — VA, i

In fact A is not completely defined by (5.3) and we are free to impos
additional condition

analogy the magnetic vector potential is given by

A =Z“:%Uf%dv. (5.15)

€ ideas are put to use in the next section.

oV
V-A= —Epllp E

This is known as the Lorentz condition. It can be shown to be -

consistent with Maxwell’s equations and it has the effect of makil

depend solely on the distribution of currents as we shall see.
Substitution into (5.8) from (5.6), (5.9) and (5.10) gives

L ELECTRIC DIPOLE

Ie 5.1 shows one possible way of launching waves from the end of a
@l line. The outer conductor of the line is connected to the edge of a
10 a large conducting plane whilst the end of the inner conductor
eCts a short distance into the space beyond the plane, where it is

2

F)
VA — gl e —uod.

SMALL ELECTRIC DIPOLE I
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Fig. 5.1 The electric field of a monopole antenna formed by allowing the cen Y
conductor of a coaxial line to project through a conducting plane.

terminated by a small sphere. In this context ‘short’ means ‘short compa
with the free-space wavelength’. The end of the line is a capacitor wi
electric field pattern is somewhat as shown in Fig. 5.1. If is assumed that
the charges accumulate on the spherical end then the current in th
necting wire can be considered to be uniform along its length and v
sinusoidally with time. R

To analyse the antenna shown in Fig. 5.1 we employ the methoe
images and replace the lower half of the diagram by an identical an
with opposite polarity as shown in Fig. 5.2. This arrangement with its |
of positive and negative charges is known as a dipole. The figure she
the electric and magnetic fields around the dipole at a moment when
polarities of the charges and the current in the wire are as shown. Exé
ination of the directions of E and H shows that the Poynting ve
directed outwards. In the next quarter cycle, however, the direction o;
reversed and the Poynting vector points inwards suggesting that the fi
around the dipole stores energy but does not radiate it. We therefore
to show that the dipole does indeed radiate.

The field pattern around the dipole is cylindrically symmetrical. At la
distances from it the length of the dipole is insignificant and the prob
has spherical symmetry. It is best, therefore, to examine the problem in
spherical polar co-ordinate system shown in Fig. 5.3 (see Appendix

E
S O y
/ "
- () ORH

Fig. 5.2 The electric field around an alternating electric dipole.

Spherical polar coordinates.

m the symmetry of the problem we expect that the electric field will
s r and 6 components and the magnetic field only a ¢ component as
n in the inset to Fig. 5.3.

e dipole is represented by a pair of oscillating charges

q = tqee™ (5.16)
ated at +£//2 as shown in Fig. 5.4. The potential at P is then

1 [qoej(mr — kyry) q”e](u)r = Lnrz):l
dme, " rs :

V= (5.17)

re ry and r, are the distances from the two charges to P. If r > [ we can

rn=r—3%lcos® =r—dr
r+4lcos® =r+ or (5.18)

T

- 5.4 Geometry of the radiation from a small electric dipole antenna.
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S0-thak . yector A is in the z direction so it has components

o [ elkodr e ~ikodr :| —_—— A, =Acos8
2 _ e — kyr 4 .
dmegr L(1 — dr/r) (1 + &rlr) € ' (5"; Ag = —Asin 6
; . : L 5.26
Expanding the terms as power series and neglecting terms above the fj Ap =0, (5:26)
Grderin(Or/z) e obtamn : g contributions to the electric field from the magnetic potential
- o _51)( : )_( __5_’)(- s )J it — k) K2
V= o [(1 + . 1 +Ij_k06?‘ 1 p 1—jkodr)|e i E, = 432[;1 con'l
_4olcos® (1 f‘ﬂ) i — kor) P kG
~ - (rz +] - € (5.2 Eo= _4;[:} <in 0 (5.27)
hich can be writt
which can be written BBt finally
V_____[p]cose(_li_'_jﬁ), (5.2 ' [plcos® (1 . ko
dngy  \r r E, = _2n£|; = + iz
where p = gyl is the electric dipole moment. The first term in (5.21) fe [p]sin® (1 kg Kk§ 55
off more rapidly with r than does the second one. It represents the fielg Eq = 4re, (F i o Ay (3.28)

an electrostatic dipole. The second term arises because of the differ
between the propagation times from the two charges to the point P.

» magnetic field is obtained from (5.3) and (5.22) making use of the
The magnetic vector potential of the dipole is from (5.15)

'.;;.:»:. ion for the curl of A in spherical polar co-ordinates (see Appendix

jopo[p] 4
A = (5. . . :
4mr & F 0 . dAg]
= — (Ag 8in 6) — —
VA4 rsinﬂ[ﬂﬁ( » ) a¢
because 5 o F
dg . - [ - L — = (rAq,)]
J] Jdv=1I=—21=jup. (5.2 r Lsin 8 ¢ r
d [0 DA
- o . E 224 2] (5.29)
The electric field of the dipole is obtained by substituting the electric a r Lar a0

magnetic potentials from (5.21) and (5.22) into (5.6). It is convenie nt
consider separately the contributions from the two potentials. In spher
polar coordinates

tunately most of the terms in this fearsome expression are zero because
s only r and 6 components and these only vary with 6. Thus the only
\ponent of H is

IV Qoav ¢ oV
:r-'—+___

vV = (5.2 1 94,
or r a9  rsin 6 a¢ . o = @ [%(FAG) = 66]
(see Appendix B) where #, 6 and ¢ are unit vectors in the three co-ordinz sin 0T 1 k
directions. Thus the electric potential contributes the field components — j% [—2 + ]TU] . (5.30)
T r

£ :M(£+%__k_%)
f dme, '

3 2 tecall that jop = 1.
E, = [p] sin (i . _kn)

fI€ complete expressions for the field of the dipole are rather unwieldy
It is useful to consider them in three parts. We note that some of the
0S fall off with increasing r much faster than others. The terms which
Off fastest are

r r r
dme, \r 2

E,=0. (5.2
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[p] cos 6 rsin 8
E = —
! 23TE(_1-"3 e e, >//<d8

[p]sinB
E,=-2lS 0
7 4wyt

(5.3-

These correspond to the electrostatic field of the dipole and represent.
capacitive storage of energy.
The next terms are

_ ko[p] cos O
" neg?
_ .ko[p]sin B
- d7eyr?

E,

Eo Geometry for integrating the Poynting vector of a small dipole radiator

sphere.
. w[p] sin B

The magnetic field is just that given by the Biot—Savart law for a cu J

element (Carter, 1986, p. 53), so this term also represents a quasi-stafj

field. If the direction of the Poynting vector for the fields in (5.32)

examined it is found that the encrgy associated with them is circulatis

close to the dipole. These terms are known as the induction field. Togethe

with the electrostatic field they form the near field of the dipole.
The remaining terms are the far field

_ —k3[p] sin 0

P :f S, 27r% sin 6 dO
0

_ wkgp*Zy  KIP1PZ,
- 12z 12n

(5.36)
-

s expression is independent of the radius of the sphere as we would
since the total power flow is the same through any clf)sed sn.grface
ding the dipole. Equation (5.36) can be expressed in a slightly

rent form by recalling that k, = 2n/L
Eq

dteyr P = 40m212(I\)2. (5.37)
H. = — wky[p] sin O (5.3 input resistance of the dipole is, therefore,
1) S ____—-a . : 4
4mr

2P 20173y
. = — = 80n*(I/A)% 5.38)
These are in phase with each other and the Poynting vector is directt & i dg (

radially outwards indicating that they represent radiation of power by tl
dipole. The wave impedance is

Ey ko \/ ( U—n) ..
= ——— = —_— = — 5.
Zo H, g, E (

exactly as for a plane TEM wave. In fact such a plane wave can be thougl
of as the limiting case of a spherical wave at large distances from 3
antenna. |

The time average value of the Poynting vector is

known as the radiation resistance of the dipole, it can be seen that it
es with length. If we assume that (/L) = 0.1 which is about the
mum value for which the theory is valid then R, = 7.9 Q. This figure
§ two problems. First it is not well matched to typical transmission-
Mpedances and, second, it means that a transmitter must supply la{ge
Ats at low voltage giving rise to large ohmic losses in the connecting
The near field of the antenna stores electromagnetic energy and,
Te, contributes a reactive component to the input impedance (see
0 and Balmain, 1968).

the power radiated from the dipole were distributed uniformly over
ace of a sphere of radius r then the magnitude of the Poynting
LOr would be

S, == (L)LZ.,wzk% sin® 9. (5.3
4rr _
To find the radiated power we integrate this over the surface of a sphett
The annular element of area shown in Fig. 5.5 has radius r sin § and widt
r df. Its area is therefore 2772 sin 6 df. The power flow is given by

2
S (L) Zow*kE. (5.39)
3 \dnr
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This is the power density radiated by an isotropic (‘same in all directiong
antenna. The directivity of an antenna is defined by comparing the magg
nitude of the Poynting vector in a given direction with the magnitude of th
Poynting vector of an isotropic antenna (with the same input power) at th

same position in space. Thus the directivity is given by vt
Si(r, 6, ) !
D 9 = —, Af
0. ) = 5% (5.4

The directivity of a small dipole is 1.5 from (5.35) and (5.39). This may als
be expressed in decibels as 1.76 dBi where the symbol dBi indicates thg
the reference signal is that of an isotropic radiator. Alternatively directivit
may be defined relative to the radiation pattern of a standard antenna
the same input power.

Not all the power input to an antenna is radiated. Some of it is dissipatg
in the antenna. The ratio of the radiated power to the input power is ti
radiation efficiency of the antenna

-__,-; 5.7 Arrangement of a centre-fed dipole antenna.

lirection the usual practice is to quote the figures corresponding to the
irection in which the power density is maximum.

‘The directional properties of antennas are usually displayed as polar
slots of the directivity. Figure 5.6 shows the polar plots for a small dipole in
es perpendicular to and parallel to the dipole. A useful measure of the
lirectional properties of an antenna is the angle at which the power density
is half the maximum value, that is

5:(8) = 3(S)max- (5-43)

for a small dipole S,(0) o sin® 0 so that, from (5.43), 6 = 45°. The included
angle (o in Fig. 5.5(b)) is known as the half-power beamwidth. For a small
dipole it is 90°.

' So far we have assumed that the dipole is fed by a coaxial cable as shown
1 Fig. 5.1. A very common alternative is the centre-fed dipole shown in
ig. 5.7 in which the feeder is a two-wire line.

_Pr
"= p

(5.4

The gain of an antenna relates its radiation pattern to the input powe
Thus

G(8, ¢) = nD(®, ¢).

The difference between the gain and the directivity of an antenna is th
the former takes account of losses within the antenna whilst the latter do
not. The word ‘gain’ is sometimes used, loosely, in place of ‘directivity
Although the gain and directivity of an antenna can be specified in a

.5 THE RECIPROCITY THEOREM

50 far we have considered antennas as radiating elements. They can, equally
€ell, act as receivers of electromagnetic radiation. The properties of an
ntenna as a transmitter and a receiver are linked by the reciprocity theorem
hich states that

(4 “)

D(8)

(" Y
N S

(@) (b)

Fig. 5.6 Polar radiation diagrams for a small electric dipole antenna: (a) in a pla
perpendicular to the dipole and (b) in a plane containing the dipole.

1In a linear system the response at a point to a stimulus at another point
1s unchanged when the stimulus and response are exchanged.
: (Carter and Richardson, __1972)

<
L

Al example of a linear system is that comprising a pair of antennas as
n in Fig. 5.8(a). Provided that the antennas and the medium sur-
dunding them are linear, passive and isotropic then the system shown in
1 figure can be represented by the matrix equation

(Ll S 540
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To find the relationship between the effective aperture and the gain of an
tenna we consider a pair of antennas as shown in Fig. 5.8(a). We shall
e that the separation between the antennas is large enough for the
e at the receiving antenna to be effectively that of a uniform plane
wave. The power density is then

P.

= p, — 12 5.46
V1 L S gl 43'[R2’ ( )

(a)

R

(b)

where Pi, is the input power and g; the gain of antenna 1. Then, from
(5.45) the power absorbed by the load is
| Aezg 1

= =5 p 5.47
P L Ae2S 4 R2 in ( )
ow the reciprocity theorem tells us that the relationship between the
put power and the load power must be the same if the roles of the

2 antennas are exchanged so

- Ac]gZ
- =—2= P 5.48
|| L= tare G-4)
e B e iR i
El and therefore
(c) Aey & (5.49)
Fig. 5.8 Communication between a pair of antennas: (a) general arrangemen Ao & '

(b) when antenna 1 is rotated and (c) when antenna 2 is rotated. ] .

0 that the effective aperture of an antenna is proportional to the gain. The
tant of proportionality may be found by considering a small lossless
le acting as a receiving antenna as shown in Fig. 5.9(a). The voltage
ced in the antenna is E;l. The equivalent circuit of the dipole con-
d to the load is shown in Fig. 5.9(b). The maximum power theorem
equires Z; = R, for maximum power transfer to the load. The load power

1/V\? 1 Eft‘2
Po=3 (‘z”) R~ B8R (8:50)

The reciprocity theorem implies that the relationship between V, and I
the same as that between V, and /, so that Y12 = Y;;. Thus an alternatiy
statement of the reciprocity theorem is '

The impedance and admittance matrices of passive linear systems a
symmetrical.

As applied to the pair of antennas shown in Fig. 5.8(a) the effect of tl
theorem is that the behaviour of the system is unchanged when the tr
mitting and receiving antennas are exchanged. Now the directivit
antenna 1 can be measured either by keeping antenna 2 fixed and rotatit
antenna 1 or by keeping antenna 1 fixed and moving antenna 2 as shov
Figs. 5.8(b) and (c). Thus the directivity of an antenna is the same wheth
it is transmitting or receiving. ]

When an antenna is acting as a receiver a useful measure of its effectivi

ness is the area from which it gathers power. The effective aperture.
defined by

A b gy (b)

L= Power absorbed by load . 5.9 Dipole receiving antenna: (a) general arrangement and (b) equivalent
~ Power density in incident wave - Tcuit,
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But the power density in the incident wave is rhe near field of this dipole is

E? ) ' [p] cos 8 5.59
s B - 1 L1550 (559
> 27, (5'5_ { 2negpor’
so, from (5.45) Hy = M (5.60)
. dmeguyr
A. = E'-:'_ 1> (5 ) [ : :
« =R " .52 which is just the field of a magnetic dipole whose dipole moment is
Substituting for the radiation'resistance of the dipole from (5.38) we hav [j] = pl (5.61)
22 3 } *aho
&= 4 5 & s is shown in texts on magnetostatics (Bleaney and Bleaney, 1976). A

: ic di i is small current loop as shown in Fig. 5.10
Therefore, since the gain of a small dipole is 1.5, we conclude that, for a netic dipole is realised as a sma P

antenna
j = nd’l. (5.62)

he loop must be small enough for there to be no appreciable phase dif-
erence between the currents in different parts of the loop. The far field of
a magnetic dipole antenna is therefore

4

e A
A, = a g. (5.5¢

5.6 SMALL MAGNETIC DIPOLE

[/1kG sin © (5.63)
The symmetry of Maxwell’s equations in free space means that, if the field Hy == drer :
E(r, t) and H(r, t) are a solution of them, then the fields ; d
1 E¢ = !.I.U[]](,Uk(] s1n 8 (564)
E'(r,t) = =3 H(r, 1) dmr
0

1 [he reversal in the sign of one of these equations compared with (5.33)
and H(r,t) =—E(, 1) (5.5 nsures that the direction of the Poynting vector is outwards. By analogy
Ho 1 vith (5.36) the total radiated power is
are also a solution. This is easily demonstrated by substituting (5.55) inf :
(1.7) and (1.8). The fields given by (5.55) are called the duals of h
original fields and their existence demonstrates the principle of duality
This principle allows us to deduce the solution to one problem from th
for its dual. '

The dual of the electric dipole considered in Section 5.4 is the magnet

1 ;
T (Zokiof?), (5.65)

Where j is given by (5.62). If the dipole has the form of the current loop
shown in Fig. 5.8 then the radiation resistance is

4
dipole. The fields around it can be derived by applying principle of dualit R, = 8nZo (E) : (5.66)
to the fields of the electric dipole with the results ' 3 A
[r] ( 1 -ko)
=—— |3 +j= ' 5.8
"7 2megpe \r° | 172 €08 2 ( j
b
[p] (1 ko kﬁ) a
=———|5+j5——)sin@ (5
Tneope \P 17 —>
s <l ,
E,= —lpl (’—”23 —~ 9—”) sin 6. (5.5¢ i
4ey \r r '1g. 5.10 Small magnetic dipole antenna.
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e variation cannot be exactly sinusoidal because of the radiation of
ergy from the antenna but careful experiments have shown that the
parture from the distribution assumed is insignificant. The electric field
large distances from the antenna is

k3 sin0l M

= VaneoR ),

Comparing this expression with (5.38) we see that the radiation resistance
of a magnetic dipole varies much more rapidly with frequency than that o
an electric dipole. If the diameter of the loop is 0.1) then the radiation
resistance is 1.92Q. This is an inconveniently small impedance but it cap
easily be increased by using a coil of several turns. For N turns the radiatior
resistance increases as N°. A further increase can be obtained by winding
the coil on a ferrite rod. This is the kind of antenna usually used in
radios. '

Eo cos kox ellwr = k(R — xsin 8)] dx. (569)

This expression can be integrated to give

_ 1Zy cos [(7t/2) cos 0]
"~ 2%R sin 0

Eq [1]. (5.70)

5.7 HALF-WAVE DIPOLE
The inconveniently small radiation resistance of an electric dipole can be
increased by making it longer so that it resonates. If each arm of the di
is a quarter wavelength long then there is a standing wave and the current
varies sinusoidally along it as shown in Fig. 5.11. When this antenna
compared with that shown in Fig. 5.2 it is seen that the charges accumulatg
along the length of the dipole rather than being concentrated at its ¢
This antenna can be analysed by assuming that it is made up of a |
number of small dipoles as shown in Fig. 5.11(a). At large distances

the antenna the path distance is effectively the same for all elements a
as the signal amplitude is concerned. For the element shown the phase i

exp jlwr — ko(R — x sin 8)] (5.67,

field pattern is very like that of the short dipole. It has cylindrical
mmetry, maximum field in the plane normal to the antenna and zero
diation along the axis of the antenna. The half-power beam width is 78°
d the maximum directivity is 1.64, figures which do not differ markedly
from those for a short dipole. The big difference is in the radiation re-
istance which is 73 Q for a half-wave dipole. This is much more practical
and half-wave dipoles are in common use for television receiving antennas.
identally this figure explains why the characteristic impedance of the
cable used for television aerial downleads is 75 Q rather than the usual
0Q.

- An arrangement which is sometimes used is a monopole antenna com-
ined with a ground plane along the lines of Fig. 5.1. This has a radiation
istance which is just half of that of the corresponding dipole and has
uble the directivity because the radiation is concentrated over one hemi-
ere. Short monopoles are used for car radio aerials using the bodywork
the car as the ground plane. Quarter-wave monopoles are used for VHF
transmitters with the conductivity of the earth supplying the ground

and the dipole moment is

Idx A
p= —jz— cos kyx.

X | dne,
N
:"ir 4 d X :_ H a ILI z/{
4 = (a)
3 a
X L 7
I =
s i | i
£
//
w4 ;
!
f
I
1 - 4
a
) ®)

Fig. 5.11 Half-wave dipole antenna: (a) geometry and (b) current and charge

tributions assumed. . 5.12 Half-wave dipole microstrip antenna.
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DIPOLE ARRAYS

Dipole antennas can be realized in microstrip. Figure 5.12 shows ong
possible arrangement. A stripline of normal characteristic impedance feeds
a much wider section whose impedance is therefore much lower. Because
of the big difference in the impedances the feed line looks very much likg
an open circuit to the wider line which then acts as a resonator (see Chapter 7
for a discussion of resonators). The standing wave excited has sinusoida
voltage and current distributions as shown and the section of line thereforg
acts as a dipole antenna. Further information about microstrip antennas i
given by Rudge et al. (1982-3).

(a) -
(c) (d)

g. 5.14 Radiation patterns of antennas comprising pairs of half-wave dipoles
ving the following spacings and phases: (a) /2, zero, (b) A/2, 180°, (c) A/4, —90°
d (d) A, zero (after Jordan and Balmain, 1968).

5.8 DIPOLE ARRAYS

The single dipole antennas discussed so far have the disadvantage that they
are not strongly directional. For many purposes it is desirable to radiate th
greater part of the power in a narrow beam or to have a receiving ante n
with a large effective aperture. This increase in directivity can be achieve
by using more than one dipole. The number of possible arrangements
very large so here we shall concentrate on illustrating the basic principl
involved. ]

Figure 5.13 shows two half-wave dipoles arranged parallel to each othe
and d apart. Each dipole radiates uniformly in all directions in the plane ¢
the paper. We will assume that the dipoles are driven with currents @
equal amplitude and relative phase a. Then the phase difference betwee
the signals from the two dipoles at a distant point in the plane is

Y = kod cos ¢ + a. (5

The total field intensity at that point is

Ey is the field strength due to one dipole on its own. Different
diation patterns can be produced by various choices of the separation
tween the dipoles and of the phase difference between them. Figure 5.14
Ws a number of examples. These show how the direction of the maximum
vity can be steered by changing the relative phase of the signals fed
1 € dipoles. Figure 5.14(c) is interesting because it shows a radiation
tern which does not have a backward lobe. Figure 5.14(d) shows the
€sence of sidelobes in addition to the main lobes.

‘the cardioid radiation pattern of Fig. 5.14(c) is given by

E = 2E, cos[(cos ¢ — 1)m/4]. (5.73)

is has a maximum value of 2 in the ¢ = 0 direction because the signals
8 the two dipoles are in phase. The maximum directivity of the antenna
1us four times that of one dipole that is 6.56 if half wave dipoles are

E = E, exp jy/2 + Ey exp —jy/2 .
= 2E, cos /2, (5.72

2

—d/2 - di2

\-&

¥ adding more dipoles we can get greater directivity. The field at a

Fig. 5.13 Geometry of an antenna comprising a pair of parallel half-wave dipol€ Mote point due to the array of N dipoles shown in Fig. 5.15 is

—

—
f—
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Fig. 5.15 Geometry for radiation from a linear array of N dipoles. P \\\
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E =Ey1 + eV 4 ediv 4 ... 4 eV - |)J1P)1 .;:;' Ve \\\
where 1 is given by (5.71) as before. The series in (5.74) is a geometrig \\\
progression whose sum is ' (a)

1 —eNiw

E =E, (]_——CW) (5-:_-.

SO ,

in /2 : 1 T T T ? T

sin Ny .

E| = R W/

B = 15 [N e

which has a maximum value of N|E,| when y = 0. The actual direction
space of the maximum radiation depends upon the relative phases of th (b)

dipoles. The direction of maximum directivity is given by

Y =kodcos ¢ + a = 0. (5.._

5.16 Polar diagrams for radiation from a six element linear array: (a) in the
e bisecting the dipoles at right angles and (b) in the plane containing the
ipoles.

If o = —kyd then ¢ = 0 and the maximum directivity is in the direction ¢
the array and the antenna is described as an endfire array. If the dipoles a
fed in phase with each other ¢ = 90° and the maximum signal is in.
direction at right angles to the array which is then called a broadside arras

The function in (5.76) has zeroes when

ariation given by (5.76). This is rather difficult to represent graphically
t is usual to display the radiation patterns in principal planes. Figul.'e
.16(b) shows the radiation pattern in the direction of the main lobe and in
A plane parallel to the dipoles.

2n 4m 6m i A very common example of an array is the Yagi—Ud.'.i array (Ru_dge

TN Wy (5.7 tal., 1982—3), shown in Fig. 5.17, which is used for television reception.

the array has only one active element, normally a half-wave dlpole..All the

And sidelobesmamimawhen dther dipoles are parasitic elements excited by the clectromagnetic field.
3n Sn Tn the spacing between the elements is on_ly a small fractllon ot" a wavelength.

Y= T e (.75 ce a conductor cannot have an electric field tangential to its surface each

arasitic dipole must be excited in antiphase with the exciting field. The
Ower extracted from the incident wave is then re-radiated and the com-
lete field of the antenna is found by superimposing the fields of the dipoles.
A closely spaced pair of dipoles excited in antiphase has an endfire field
Pattern so, by extension, a Yagi—Uda array is an endfire array. If such an

Figure 5.16 shows the polar diagram for the electric field strength of a
element array. It must be remembered that this diagram only shows
radiation pattern in the plane normal to the dipoles. In planes at ri
angles to this one the pattern is that of an individual dipole scaled by tb
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Fig. 5.17 Arrangement of a Yagi—Uda antenna.

Reflector —bf2

array were arranged with a conducting plane normal to its axis and close.
the active dipole the result would be an increase in the directivity becay
of the reflection from the plane. A practical antenna uses either a sm
array of parasitic dipoles (as shown in Fig. 5.17) or sometimes just @
slightly longer dipole to achieve the same effect.

5,19 Geometry for radiation from a uniformly illuminated slot.

simplest example of radiation from an aperture is that which occurs

gap in a conducting plane is illuminated by a plane wave as shown

5.19. The field at a remote point due to the secondary source dy is
by

5.9 RADIATION FROM APERTURES ' ikoEoa dy e Jhor

(1 + cos 0)

s 4 r

] 5.80
A radiating dipole can be thought of as a termination of a two-wire li :30)

which matches the wave on the line to the radiation field. In a similar w
we can imagine antennas which are based on matching the fields is
hollow waveguide to the radiation field. .

The basis of the analysis of radiation from apertures is Huygens’ thei
of secondary sources. According to this theory a propagating wavefr
can be regarded as being made up of a large number of secondary sour
each radiating a spherical wave as shown in Fig. 5.18. The superpositior
these waves forms a new wavefront and so on. It turns out that, in orde

model this process correctly each secondary source should have a radial

re a is the width of the aperture in the x direction and
r=R— ysin 0. (5.81)
field radiated from the aperture is thus

— jkoEoa(l + cos 0) J’bfz EM
T

E : dy.
4 _pp R —ysin@ .

(5.82)

> b the bottom line of the integral is approximately equal to R and

pattern which varies as (1 + cos 8), where 8 is the angle measured fro koEga(1 + cos 0) | (*? , _
normal to the wavefront, and a phase which is 90° ahead of that o E| = AR f_m exp (jkoy sin 8)dy (5.83)
wavefront (Jordan and Balmain, 1968). Note that the angular variat : ) .
ensures that there is no radiation back towards the source. ' fil can be integrated to give
i .
b |E| = koliud (1 + cos 0) [w] (5.84)
X 4nR kob sin 6

N e

prug

angular variation of this expression is dominated by the last term.

1 Zi'l pendence of the power density on 0 is shown in Fig. 5.20, where
T j kobf2) sin 8. The field nulls are given by

Prima Wavefront 2 1 2 =

gL With X ! Lkob sin 6 = £Nm, (5.85)

[
-,

secondary
sources

“

N = 1,2, 3, etc. Hence

B = +sin~! (N—k) (5.86)

Fig. 5.18 Representation of wave propagation by superposition of secont
' b

wavelets.
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Fig. 5.20 Variation of intensity of radiation from a uniformly illuminated slot w

the parameter u = (kyb/2) sin 0.

Clearly the maximum number of nulls is given by

N = b/h

so that a narrow aperture will produce only a single lobe in the radiat

pattern. Conversely a wide aperture produces many lobes with a n

main lobe. It is generally true that the beam width in a particular ‘.;-
plane. Thus t

inversely proportional to the width of the aperture in that
parabolic reflector shown in Fig. 5.21 has a beam which is narrow

horizontal direction and wide in the vertical direction somewhat as sho
In general for an aperture illuminated by a wave whose intensity val

as E = Ey(v) we have

hi2

—JkoR f

B jkoa(l + cos 8) .

‘ +jkoy sin B
AR Eo(y) e dy.

bi2

Fig. 5.21 Illustrating the relationship between the dimensions of a parabolic hy

antenna and the horizontal and vertical beamwidth,

—
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22 Radiation patterns for a slot with various distributions of illumination:
) uniform, (b) cosine and (c) cosine squared illumination.

e integral is the Fourier transform of the source distribution. Figure 5.22
some source distributions and the corresponding radiation patterns.
1e first two are those for a uniformly illuminated aperture and for radiation
m the open end of a rectangular waveguide. Now the width of a stan-
ird waveguide is of the order of magnitude of the free-space wavelength
) the width of the beam radiated from an open end is large. To obtain a
rower beam we expand the end of the waveguide into a ‘horn’ as shown
Fig. 5.23. Provided that the expansion is gradual and the aspect ratio of
orn is the same as that of the waveguide there will be a negligible
ismatch between them. Moreover the wave impedance is given by

he
:Z—
%

om (2.45) and (2.46). As the wave travels down the horn A, tends to X
the wave impedance tends to that of free space. Thus the horn serves
means of matching the fields of the waveguide to those of the radiated
A more careful examination shows that the wavefront in the horn is
ndrical so that there are small mismatches at the transitions from a
dne wave and to a spherical wave. It is also necessary to remember that
1€ surface at the mouth of the horn on which the phase is constant is a

Ze (5.89)
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Fig. 5.23 A waveguide horn antenna.

A3 o,

cylinder and not a plane. The cos? illumination shown in Fig. 5.22(¢
commonly used in radar antennas.

Another common kind of aperture antenna is the parabolic reflec
illuminated by a horn. This antenna and variations on it are used extensiy
for point-to-point and satellite communication links. Small dishes
becoming increasingly common with the growth of direct broadcas
satellite. If the horn generates a spherical wave whose apparent source
the focus of the parabola then the waves reflected from the dish have p
wavefronts. The radiation pattern of the dish may therefore be deri
assuming illumination of its aperture by plane waves. The theory is sligl
more involved because the aperture is circular rather than rectangular
the general principles are the same. The directivity of a circular parabc
dish is given by g

(b)
. 5.24 (a) A slot antenna and (b) its complementary dipole.

sected to act as an antenna which radiates on both sides of the conducting
et in which it is cut.

Jooker’s principle (Jordan er al., 1968) states that the radiation from a
t antenna is the same as that from a dipole antenna which would just fill
slot (Fig. 5.24(b)) with the electric and magnetic fields interchanged.
dipole is called the complementary dipole. It can be shown that the
iation resistances of the slot antenna and its complementary dipole are
ated by

2na\?
Dypwx = K (——)
A

where K is a constant in the range 0.61 < K < 0.865. Its effective 2
typically around half of its physical area.

R.Rq = Z}/4. (5.91)

e do not usually require the slot to radiate on both sides of the plane. A
gle-sided antenna can be made by backing the slot with a resonant cavity
shown in Fig. 5.25 (resonant cavities are discussed in Chapter 7). Because
> slot now radiates only on one side and the resonant cavity presents an
N circuit on the other side the radiation resistance is double that of the
n slot. The slot can be excited by exciting the cavity with a probe or by
necting the two wires of a transmission line to opposite sides of the slot.
us the radiation resistance of a cavity-backed half-wave slot radiator is

_2x (31
S ©T
lis impedance is too high for it to be easy to match the antenna to a

axial cable. This problem can be solved by connecting the cable across
1€5lot close to one end where the voltage is much lower. This arrangement

5.10 SLOT ANTENNAS

In Chapter 3 we saw that one possible TEM transmission line is the slot li
formed by the gap between two parallel plates. If a section of this ine
closed off by a pair of short circuits the result is a resonant section of li
which can be excited by connecting a signal between the centres of the 3
sides of the slot as shown in Fig. 5.24(a). The resulting standing wave int
slot can be thought of as the superposition of a pair of equal and oppos
travelling waves passing through the slot regarded as a short length
rectangular waveguide. It follows that a slot excited in this manner may

=973 Q. (5.92)
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Fig. 5.25 Arrangement of a cavity-backed slot antenna.

14 | 1/4 , 5.27 Slot antennas in waveguide: (a) showing how a slot is excited by the
rents flowing in the walls of the guide, and (b) a multi-slot array.
Z R “m : 1 PHASED ARRAY ANTENNAS
i}
what has been said earlier about the radiation patterns of dipole

it will be clear that the radiation pattern can be altered by varying
relative phases of the array elements. This idea can be extended to cover
ys of other types of radiator. By making a two-dimensional array of
nts it is possible, in theory, to synthesize any desired radiation pattern
the limits imposed by the overall size of the array. One reason why
ea is very attractive is that it allows the beam of the antenna to be
red electronically instead of mechanically. Mechanical scanning is
d by the inertia of the antenna. Electronic scanning offers the possi-
of steering the beam almost instantaneously. This is clearly very
ive for military radar systems because it allows several fast-moving
to be tracked simultaneously.
he disadvantage of phased arrays is that they must be very complex if
re to achieve good resolution. A typical array might have 100 x 100
ments. It could scan to a little over 45° either side of the normal to the
ay. Beyond this point the resolution deteriorates because the effective
re of the antenna is smaller. Thus to achieve full coverage of the sky
ut moving the antenna five arrays arranged in a truncated four-sided
id are required.
o different implementations of phased arrays are possible as shown in

Fig. 5.26 An off-centre fed slot antenna.

has the equivalent circuit shown in Fig. 5.26 where Z, is the characten
impedance of the slot line. :

Another way of exciting a slot antenna is to cut it into the wall €
waveguide, as shown in Fig. 5.27(a), so that it intercepts the current
culating in the wall. An array of slots (Fig. 5.27(b)) can act as a comj
highly directional antenna. The slots are carried over on to the broad W
of the guide to make them long enough to resonate within the waveg
band. If they are arranged at half guide-wavelength intervals then angk
them as shown ensures that they are excited in phase with each other
that the array radiates in a broadside pattern.
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Antenna ch we cannot pursue here. For further information see Rudge et al.
array ;_3).
Power y CONCLUSION
Amplifiers 4 . y :
is chapter we have seen how the alternating current in an electric or
Phase ic dipole can produce a radiating spherical TEM wave. The magnetic
Shifters r potential was introduced as a way of dealing with this kind of prob-
It was also noted that the finite time taken for a wave to travel from
Power oint to another means that the phase of the wave must be related to
splitters f the source at an earlier time. This can be done by using the concept

arded potentials. The power radiated from a dipole appears to the
rce to be dissipated in a resistive load whilst the energy stored in the
r field provides a reactive component of impedance. For maximum
er transfer the radiation resistance of the antenna must equal the source
edance. The reciprocity theorem was used to link the concept of the
y of a transmitting antenna to the effective area of a receiving antenna.
 properties of a small magnetic dipole were deduced from those for a
Il electric dipole by using the principle of duality.

he radiation from apertures such as waveguide horns and dish antennas
sidered based on Huygens’ method of secondary sources. It was
hat the radiation pattern of these antennas is the Fourier transform

Low-power source

(a)
v v v v Antenna
array
Phase
n n Shifters

Power illumination of the aperture so that narrow beams require large-
Splitters ture antennas for their generation.
i ther practical antennas were discussed including the half-wave dipole,

::r?glhfi’::"er irter-wave monopole and the slot antenna regarded as a complementary
dipole. The use of arrays of antennas to provide particular radiation
acteristics was introduced and the subject of active phased arrays was

Low-power fly touched on.

source

SRCISES

-ompute the effective areas of antennas having 20 dB gain at frequencies
of 500 MHz, 4 GHz and 35 GHz.

(b)
Fig. 5.28 Pha:'ied_ array antenna block diagrams: (a) system with low-power ;-
shifters and distributed power amplifiers, and (b) system with a single high-pe
amplifier and high-power phased-shifter. .
Calculate the radiation resistance of a 100-turn coil wound on a non-

; : magnetic former 10mm in diameter at a frequency of 1 MHz.
Figs. 5.28(a) and (b). The first employs a low-power signal source |

carries out the power splitting and phase shifting at low power. There
then as many power amplifiers as antennas and each can be of quite
power. For example a 100 x 100 array of 10 W amplifiers would rad
100kW. The second arrangement uses a single high-power amplifier,
a!}ly a microwave tube, and carries out the splitting and phase shi
higher power levels. The question of which of these two approaches is
preferred is a complex one involving factors such as cost and reli

ot the polar radiation diagrams and calculate the maximum direc-
vities for antennas comprising two parallel quarter-wave dipoles with
e following spacings and phase differences: (a) A/4, zero, (b) A/4,
180° and (c) &, 180°.

Calculate the directivities of endfire arrays of two, four and eight
Quarter-wave dipoles at frequencies 10% above and below the
Tequency at which they are a half-wavelength apart.
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5.5 Plot polar diagrams for the radiation from a uniformly illuminate
100mm wide at frequencies of 5GHz, 10 GHz and 60 GHz.

5.6 Find the correct point for connecting the feed to a cavity-bac
antenna as illustrated in Fig. 5.26 if the radiation resistance is
the characteristic impedance of the slot is 100Q and the so
pedance is 50 Q.




