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Waves guided by perfectly
~ conducting boundaries

TRANSMISSION LINES

lest systems for guiding electromagnetic waves are the two-wire
e 2.1 illustrates some common types. These lines all have at
conductors which are electrically insulated from each other. In
1 the whole space where the electric field is not zero is filled with a
| dielectric material. A number of other types of two-wire line exist
e more than one dielectric around them. These lines which have
re complicated behaviour are discussed in the next chapter.
tary treatments of the theory of lines such as those shown in
. assume that the fields are transverse. It is straightforward to show
is consistent with the circuit approach for the special case of the
ble (Carter, 1986). We now must prove that this result holds for
f this type.
fields around the conductors obey Maxwell’s equations (1.8) and
Taking the curl of (1.8) and using (1.16) gives

VA(VAE) —%(V/\B)

0
-u—(VAH
vl )
0’E
= —gu—- 2.1
E!‘" at2 ( )
eft hand side of this equation can be written
VA(VAE)=Y(V-E)- VE. (2.2)

tionship can be proved by evaluating the derivatives in terms of
rtesian components of E though the task is a bit laborious. Now,
€re is no free charge between the conductors p = 0 and therefore
= 0 from (1.5). Thus from (2.1) and (2.2) we have
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ransmission lines: (a) parallel-wire line, (b) coaxial cable, and
; .

Fig. 2.1 Two-wire t
(c) triplate line.
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X and y components and that the
(2.4) produces
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If we assume that

2 = euw?,
Then
8’E, = 9E,
a _5)7'_ =0
But E can be written in terms of a scalar potential V
.
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m of the wave equation. In Cartesian

(2.4)

rEyand E.. N OW suppose that E has only
Sevary as exp j(wt — kz). Substitution into

(2.6)

(2.7)

(2.8)
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Similarly by considering the y component of E we obtain

2 2
9 (av aV)=O'

2% (2.10)

o " ay?
quations (2.9) and (2.10) can be satisfied simultaneously if the expression
the brackets is zero, that is, if V satisfies Laplace’s equation (Carter,
36, p. 16). Thus for the mode of propagation which satisfies (2.6) the
ic field distribution is identical to the electrostatic field between the
odes. That is why it is possible to compute the capacitance and in-
ance per unit length of such a line from the static field solutions. It
d be noted that, whilst this TEM wave is a possible solution, there
be other solutions for which (2.6) is not satisfied and the fields differ
 the static fields. This point will be examined further in Section 2.8.
use of field theory here, as very often in electromagnetism, is to
ovide a way of calculating the circuit parameters. The phase velocity
a TEM wave on a two-wire line is constant and equal to that of an un-
d plane TEM wave propagating through the same medium as that
h separates the conductors. Expressions for the capacitance and in-
ce per unit length and the characteristic impedance for the two-wire
s shown in Fig. 2.1 are given in Table 2.1.

le 2.1

C (Fm™) L (Hm™) Z(Q)
2 kel Lm0
e SRR I
ewng W e

REFLECTION OF WAVES BY A CONDUCTING PLANE

.:-.:- Implest case of reflection of waves by a conducting plane occurs when
direction of propagation is normal to the plane. Equation (1.45) shows
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Fig. 2.2 Reflection of clectromagnetic waves from a conductin g surface at normal

incidence. 2.4 Standing wave produced by reflection of an electromagnetic wave between

o parallel conducting planes.

that the wave impedance in a good conductor tends to zero as o tends to
infinity. The boundary conditions at the surface of the conductor are there-
fore given by (1.86). If the conducting surface lies in the (x, y) plane as

shown in Fig. 2.2 the electric field in the region to the left of the plane is
given by

ly in the electric and magnetic fields. This‘situation ig ana]ogouls to tht’;
fer of energy between kinetic and poteqnal energy in a pe'ndu um, cl)
tween electric and magnetic stored energy in a resona_nt mrcu\rt. Adsml-np e
tromagnetic resonator can be constructed by putting a secon pfat\Ez
lel to the first. If the second plane is located at one of thc% zeroes t_)“ ;
ric field, shown in Fig. 2.4, then the boundary conditions }\:11 e
ed upon it. Taking the separation between the planes as d the con-
for resonance is

Egexp j(wt — kz) — Eyexp j(wt + kz) = =2jEq sin kz exp(jor). (2.11)

The field is therefore a standing wave as shown in Fig. 2.3. The amplitude
of the electric field at each point in space is fixed and the actual field values
vary sinusoidally with time between the limits indicated by the solid and

. sin kd = 0
broken curves shown in the figure. .
The corresponding magnetic field is k = 7 74_ 7 etc. (2.13)

. : 2E, . i -
Hy exp j(wt — kz) + H, exp j(wr + kz) = __Zj cos kx exp jor. (2.12) /e shall return to this subject in chapter 7.
0 i

.3 TRANSVERSE ELECTRIC WAVES

the waves are incident obliquely upon the boupdary the sntugt‘lo‘n is
er more complicated. The cases when the electric and magnetic helc}
ors are parallel to the plane must be treated separately. Any ger{lerg

can then be regarded as a superposition of these two particular cases.
onsider first the case with the clectric field vector parallel to the con-
ing plane. Equation (1.95) shows that the incident ant_j reflected wawclsc
be in antiphase at the boundary because the tangentla]} component o

lectric field must always be zero there. It is he.lpful to discuss the wave
ern produced by this reflection by thinking in terms of wavefronts.
re 2.5 shows the electric fields of the incidcnt‘ and reflected wave§
matically at an instant of time. The solid lines represent places
Te the electric field is a maximum and directed out c?f the paper and the
N lines places where it is maximum but directed into the paper. The
10ns of motion of these wavefronts are shown by the arrows. At the

This field is also a standing wave but with a maximum rather than a zero
of field at the surface of the plane. The factor j which appears in (2.11)
but not in (2.12) shows that the electric and magnetic fields are in phase
quadrature so that there is no flow of energy. The energy is stored alter-

Sy

7

Fig. 2.3 Standing wave produced by the reflection of electromagnetic waves by a
conducting surface at normal incidence.
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,J;A at R and RS is perpendicular to PQ. Then from the triangle PRS we
J%nve

Reflected

wavegonts el RS = PS tan 0
nciden X
Y Wavefronts 3 = ho/(2 cos 0) (2.15)

‘ which is the separation between the planes A-A and B-B.

A = e i i ig. 2. e that the pattern of wavefronts is moving
Bes SR ; m;;lil‘::)gt?lgea;;aitel.:l”%‘hz fva;t;lsgngth in thi;J direction is Ay/sin 8 so that the
p—— ///__ A ase velocity is given by

" # vp = fhyfsin 6 = vpnfsin 0 (2.16)
*— o v 07 ©

here vy, is the phase velocity of the incident wave. If the space in whi.ch
e waves are propagating is empty then (2.16) shows that the phase \ielocuy
the waves exceeds the velocity of light. This apparently contradicts the
' ption in the theory of relativity that nothing can move faster than the
d of light. There is, in fact, no contradiction as will be shown la_ter on.
The behaviour of the magnetic field can be deduced by considering
2.8 which shows wavefronts in terms of the magnetic field vectors at a
nent in time. The arrows show the directions of the ﬁeld: The compon-
it of H parallel to the surface is not reversed by the reflection so ‘thal itis
istent with equation (1.96). The planes A-A and. B-B are ldcn.tl'cal
ose in Fig. 2.5. The pattern of the magnetic field is the superposition
e fields of the incident and reflected waves. Using the Cfmesmn co-
nate axes shown in Fig. 2.8 we can resolve the magnetic field vectors
llel and perpendicular to the plane to give e
he behaviour of the magnetic field can be deduced by considering
g. 2.8 which shows wavefronts in terms of the magnetic field vectors at
moment in time. The arrows show the directions of the field. The com-
ent of H parallel to the surface is not reversed by the reflection so
is consistent with equation (1.96). The planes A-A and B—B are
entical to those in Fig. 2.5. The pattern of the magnetic field is the

Fig. 2.5 Reflection of a plane electromagnetic wave by a conducting plane for
oblique incidence with the electric field vectors parallel to the plane.

conducting surface the incident and reflected waves are in antiphase a:
required by the boundary conditions. |

On planes such as A-A the two waves are in phase with each other
producing a maximum of the electric field. This maximum is just twice the
amplitude of the incident wave. Similarly on planes such as B-B the waves
are in antiphase so that the electric field is zero. These planes are parallel
to the conducting surface, are evidently equally spaced, and their positions
are independent of the instantaneous positions of the wavefronts. Thus in
the direction normal to the plane there is a standing wave exactly as in the
case of normal incidence.

The separation between the planes can be found by considering Fig. 2.6.
PP’ and QQ’ are successive wavefronts in a wave with angle of incidence 6.
The perpendicular distance between them is equal to the wavelength of the
incident wave . The wavelength along the plane is therefore

PQ = Ay/sin 6.
If Q-Q" is a reflected wavefront then PP’ and QQ" intersect on the ling

s,
o
sTu:|l.al
0
S,
agnetic wave by a conducting 7 Vector addition of the Poynting vectors of the incident and reflected

plane for oblique incidence.



—_

32 | WAVES GUIDED BY PERFECTLY CONDUCTING BOUNDARIES

TRANSVERSE ELECTRIC WAVES | 33

NN\ //H' 2 /%—2

Hefre&d % \* Incident
wavefronts\
- N A%

\/’ / wavefronts
AV VRN 4

\ 7

NN —

ARV AVAV AN AN S
7 7 77

Fig. 2.8 Magnetic field vectors for the reflection of electromagnetic waves by |
plane as illustrated in Fig. 2.5.
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2.9 Magnetic field vectors at various positions close to the conducting plane
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superposition of the fields of the incident and reflected waves. Using the
Cartesian coordinate axes shown in Fig. 2.8 we can resolve the magneti
field vectors parallel and perpendicular to the plane to give

H,= |Hj|sin® and H. = —|Hi|cos®  (2.18

ROX0

for the incident wave, and

H,= —|H]|sin® and H. = —|H;| cos 0 (2.19)

for the reflected wave. Then, on planes (A-A) on which the magneti
fields are in antiphase, the z components cancel and

Similarly on planes where they are in phase (B—B) the Yy componen o 2_“(:056 = kycos B (2.25)
cancel so that T
HZ =2 Hi ~0s 0. .
B cos & 1 k,= o sin 8 = ky sin 6. (2.26)
The local directions of the magnetic field are therefore as shown i Mo

Fig. 2.9. The magnetic flux lines are seen to form closed loops as require
by equation (1.2).

We are now in a position to write down the equations which define thi
electric and magnetic field vectors at every point in space. These are

> equations show that we can think of a wave travelling at an angle to
dinate axes as propagating as
exp j(wt — kyy — k,2), (2.27)

{ ky and k. are the components of the vector propagation constant k

E. = 2|E;|sin k,y cos (wf — kiz 2.22) . SN At
! | 08 ; s and z directions. k is a vector in the direction of propagation

2E| . - |
H, =——"5sin O sin k. t—k g - magnitude is 27/h,,. _ .
Y Z el con <) @ € 2.10 summarizes these results in the form of a dlagrlam. The f;e{d
2|E| . shown is repeated periodically in bot_h the y and z chren::_tu:ms.2 ;215
H. = Zl cos 6 cos kyy sin (wr — k;2), ending some time studying Fig. 2.10 in relation to equations (2.22)
]
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to (2.24). Notice that H, is in phase quadrature with E, so the Poynting
vector derived from them has a time average value of zero. This is another
way of showing that the power flow is in the z direction.

The wave pattern shown in Fig. 2.10 has magnetic field components both
parallel to and perpendicular to the direction of propagation of the wave,
The electric field, however, only has a component perpendicular to the
z axis. This kind of wave is known as a Transverse Electric (TE) wave. It is
useful to distinguish it as a separate kind of wave although it is, in reality,
just the superposition of two TEM waves travelling at an angle to each
other. Because the magnetic field has a component in the z direction this
kind of wave is sometimes referred to as an H wave,

2.4 TRANSVERSE MAGNETIC WAVES

parallel to the reflecting surface a somewhat different pattern exists. In this
case the boundary conditions to be applied are (1.92) and (1.93) so that the
incident and reflected waves have their magnetic field vectors in phase at
the boundary and the tangential components of the electric field are in
antiphase. The analysis of this situation follows exactly the same path as
that in the previous section. It will not be followed in detail here but left as
an exercise for the student.
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Fig. 2.11 Reflection of a plane electromagnetic wave by a conducting plane for
oblique incidence with the magnetic field vectors parallel to the plane.
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. time A—A is a null plane. The separations of the planes can be

” exactly as before. . ’

e :l;elz shmzs the electric field vectors by analggy with Fig. 2.86;

1310“; the directions of the vectors at the reflecting sur;e.ucerzn;ui"s
i ic field is zero. Figure 2.
tial component of the e]ectrlc_ ‘ -

th:h;aggﬁ? vectors at certain points obtained by superimposing the

lected waves. . .

L ar};(ijngZefci shows the complete field pattern for th%s case.dI\_I,otlcti

' yelect-ric field lines form closed loops except immediately a ]acr:l?ll:

ﬂ:u:;onducting plane where they terminate on‘surface charges. The

ns describing the fields are found by inspection to be

H, = 2';” cos (k,y) cos (ot — k.2) (2.28)
0

E, = —2|Ej| sin 6 cos (k,y) cos (ot — k.z) (2.29)

E. = 2|Ej| cos 6 sin (k,y) sin (ot — k.z), (2.30)

E E
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Reflected % \\ \/ e wavefronts
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Electric field vectors for the reflection of electromagnetic waves by a

illustrated in Fig. 2.11.

B
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.1 Electric field vectors at various positions close to the conducting plane of
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holBing ¥ 2.2 Rectangular waveguides in common use
H\'\H i Designati b Frequency Power
ation a
éUéUé ‘ _Demgn USA (mm) (mm) (GHz) (MW)
1 i ' y .
- - WR650 165.1 82.6 1.14to 1.73 13.5
WR430 109.2 54.6 1.72to 2.61 5.9
tolcos 6 WR284 72.14 34.04 2.60to 3.95 2.4
WRI87 47.6 2.1 3.94t0 5.99 1.0
' WRI137 34.85 15.80 538t0 8.17 0.54
S — ' ( 2.50 0.23
~ N WR90 22.86 10.16 820to 1
" WR62 15.80 7.90 11.9 to 18.00 0.12
/’\ m WR42 10.67 4.32 17.6 to 26.7 0.048
iz Z WR28 7.11 3.56 26.4 to 40.1 0.025

O+ —k

Fig. 2.14 Complete field pattern produced by the reflection of electromagnetic.
waves by a conducting plane when the magnetic field vectors are parallel to the
plane.

ode propagates we refer to Fig. 2.10. In this ﬁgure the waves are
ing from left to right parallel to the conducting plane and Fhe
c field is normal to the plane of the paper. If another conducting
is placed parallel to the first so that it coincides with Fhe ﬁr.st null
of the field pattern then the field between the two planes is unatfef:ted
2mains exactly as shown in Fig. 2.10. If, in addition, another pair of
ing planes is placed parallel to the plane of t]lme paper the wave can
ropagate because the electric field is perpendicular to these planes
boundary conditions can be satisfied. The set of four p.lam?s so de-
a rectangular conducting pipe exactly as illustrated in Fig. 2.15.
pagating wave can be thought of as a combination of TEM waves
from wall to wall down the waveguide.

ison of Fig. 2.10 and 2.15 shows that

cos B = hy/2a. (2.31)

magnetic (TM) wave. The alternative terminology, an E wave, is some-
times used.

2.5 PROPAGATION IN A RECTAN GULAR WAVEGUIDE

mensions is discussed in Section 2.7.

Because a rectangular waveguide has only one conductor it cannot sup-
port a TEM wave. This is clear from the discussion in Section 2.1 where it
was shown that the fields of such a wave satisfy Laplace’s equation in

and therefore TEM waves cannot exist in a rectangular waveguide.

It is, however, possible for both TE and TM waves to propagate down
the guide. In this section we shall consider the TE mode which has its
electric field vector parallel to the narrow wall of the guide. Other possible

modes of propagation will be considered in Section 2.7. To consider how A rectangular waveguide.
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It is convenient to define the guide wavelength of the TE wave by

kg = ho/sin B (2.32)

he phase velocity of the wave is given by the ratio of the frequency to the
ropagation constant, that is by the slope of the line from a point on the

/e to the origin of the graph. Mathematically
1

2
w T z
=—=c[1+(—]) |. 2.37
P kg c[ (kga) ] 237
h s the phase velocity of a wave in an empty waveguide is always greater
the velocity of light and tends to c as k, tends to infinity. Unlike the

(see Fig. 2.10) so that
sin 6 = Ay/h,. (2.33)

The anglg 8 is not apparent to the user of the waveguide. It can be eliminated
by squaring and adding (2.31) and (2.33) to give

vy, 1 1 1 transmission lines discussed earlier the phase velocity of a wave varies

N (ay * Kg (2.34) h frequency. This means that, if an electromagnetic pulse is injected

o the guide, the different Fourier components from which it is made up

or 1 . 1 with different velocities and the shape of the pulse which emerges
KON (e o the end of the guide differs from that injected. The pulse is said to be

sed by the guide and the guide itself is described as dispersive. This
erty is not limited to rectangular waveguides, it occurs in any wave
agating medium in which the phase velocity is a function of frequency.
2 2.16 is called the dispersion diagram of the waveguide.

uation (2.37) apparently violates the axiom of the theory of relativity
thing can travel faster than the velocity of light. There is in fact
ontradiction. The axiom is more accurately stated as: ‘Information
ot travel faster than the velocity of light.” A continuous sine wave
no information, to become a carrier of information it must be
ulated in some way. The effects of modulation are most easily illus-
by considering the superposition of two signals having the same
de and slightly different frequencies. Technically this is double-
d suppressed-carrier modulation (J.J. O'Reilly, 1984). If the two

Multiplying this equation by 4%, recalling that the propagation constant is :
given by k = 2xt/}, and that in free space k = w/c, where c is the velocity of
light, we obtain

1 1
kg = —(0® — 0y (2.36)

where w. = (mc/a). To understand the significance of this equation it is
helpful to consider the graph of w against k derived from it shown in
Fig. 2.16. When o = w,, kg = 0 so that the wave does not propagate. The
guide is then said to be at cut-off and w, is referred to as the cut-off frequency.
The physical significance of this result can be shown by considering equation
(2.33). At cut-off A, tends to infinity so that 6 = 0 and the wave bounces
backwards and forwards across the guide without progressing down it,
At frequencies above cut-off the relationship between the guide wave-
length and the frequency is given by the curve in Fig. 2.16. At any frequency Ey = Epexp j[(w + dw)t — (k + 8k)z]
E, = Ejexp j[(ow — dw)t — (k — dk)z]. (2.38)
S¢ expressions can be rearranged to give

E, = Ej exp j(wt — kz) exp j(dwt — dkz)

w

‘ E> = E, exp j(ot — kz) exp [—j(dwt — 8kz)]. (2.39)
en they are added together the result is
| E = 2FE; exp j(wt — kz) cos (dwt — dkz). (2.40)

Xpression can be interpreted as a carrier wave which propagates as
= kz) whose amplitude is 2E, cos (dwt — dkz). The envelope of
er wave carries information at a velocity given by

dw

; dw
o= bim, (50) = & S

e

Fig. 2.16 Dispersion diagram of a waveguide.
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This velocity is known as the group velocity of the wave. On the dispersion
diagram (Fig. 2.16) it is represented by the slope of the tangent to the
dispersion curve at a point. It is evidently always less that the velocity of
light and it tends to zero at the cut-off frequency.

By differentiating (2.36) it can be shown that the group velocity in a
rectangular waveguide is

rea. In a guide filled with air at atmospheric. pressure the electric ﬁt?ld is
ited by dielectric breakdown. This sets a llvl‘ll'll‘t on the power density in
e guide. The maximum power handling capabilities of waveguides dec_rease
h the square of the cut-off frequency. Table 2.2 shows th‘e maximum
ommended power-handling capabilities of stz.mdm."d wavejgu]d’es. ngher
owers can be dealt with by pressurizing the guide either \.mth air or with a
.s such as freon or sulphur hexafluoride. The power which can be trans-
itted can also be increased by evacuating the guide because that also
es the breakdown field.
y calculating the total stored energy in one wavelength of the wave
comparing it with (2.48) it is possible to show that the velocity of
ropagation of energy is equal to the group velocity (see Exe_rqse 2:3).
If the signal frequency is below the cut-off frequency then k is imaginary
can be seen from (2.36). The wave no longer propagates down the guide
nd the fields decay as exp —k,z. Equations (2.45) and (2.46) show that

Ve = c(ho/hy) = c sin 0 (2.42)

which is just the z component of the phase velocity of the wave bouncin
down the guide.

2.6 POWER FLOW IN A RECTANGULAR WAVEGUIDE

The fields of the TE mode discussed in the previous section are readil
derived from equations (2.22) to (2.24) since

i

k, = nla (2.43 ' and H, are in phase quadrature (becausc_: hg i imaginary) so that the

’ [ Poynting vector is purely imaginary. There is then no ﬂqw on energy but

HOREE S B nly a reactive storage of it. A cut-off wave of this kind is known as
k. = kg (2.44) an evanescent wave,

It is often useful to apply transmission line theory to waveguide _prob-
' To do this we require the characteristic impedance of‘ the guide as
vell as the guide wavelength. The characteristic impedance is defined by

Z, = |Vol*2W, (2.50)

So, making use of (2.31) and (2.33)

[

E, = Eysin (Ea}-,) cos (ot — kyz) (2.45)

) : sal di he
Ey by . (my y ere V, = bE, is the magnitude of the potential .dlfference between t
=g (?) cos (ot = &) (2-46) stres of the broad walls of the guide. Substituting for the power flow
E, A i (2.49) yields
0 Mo Ty .
Il S = = ; 2b M
I H, Zo A cos ( ” ) sin (wt — kyz). (2.47 Z, = . EB Zs. (2.51)

From these equations it can be seen that E, and H, are in phase with one
" another whilst H, has a phase difference from them of 90°. The time
average Poynting vector is therefore

w S, = %FExl |Hv| (248

and the average power flow is obtained by integrating S, across the cross
W section of the guide

that the characteristic impedance of a waveguide varies with freq_uency.
e theory of transmission lines is commonly based upon an equivalent
it for the line. Our discussion of rectangular waveguides has, so f_ar,
ted a field approach. It is, however, possible to represent a waveguide
n equivalent circuit. The derivation of that circul_t prov1des_a useful
aple of the way in which such circuits can be derived for microwave
mponents. _ .
re 2.17(a) shows a sectioned view of a waveguide 1nc1udm_g_the
c and magnetic field patterns. To satisfy the bo_und_ary conditions
e must be charge concentrations and currents flowing in the walls as
nin Fig. 2.17(b). To derive the equivalent circuit of a sho.rt length dz
e guide we include shunt capacitance to represent the dlsplacemf:nt
nt paths and shunt and series inductance to represent the conduct:_on
ent paths. The result is the circuit shown in Fig. 2.18. In order to derive

1 b ]
w=3 [ o [ 11,
0 1]

_ab g |
4% Zo

This equation shows that the power flowing in a guide depends upon the:
electric field strength at the centre of the guide and the cross-section

(2.49)
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Iodz 31,4z

Cdz ‘I—_ Ly/dz

o] o)
Fig. 2.18 Equivalent circuit for the TEy mode in a rectangular waveguide.

. is equation fits exactly the curve shown in Fig. 2.16 provided that

L,
- 2 P R e 2.53
L,C=1/w and L 5 (2.53)
vhich satisfy conditions 1 and 2. The iterative impedance of the network

Cl ds to

_ UJL]
T @LiC~ 1

 dz tends to zero. Equating the expressions for Z, given by (2.51) and
) to satisfy condition 3 gives

Z, k (2.54)

2ab
Li=—=w (2.53)
< J 1 - -.-; —+ g:rrent flow i N
e arges ' >
R g 9 d, from (2.53) we obtain
Fig. 2.17 The TE;;, mode in a rectangular waveguide: (a) Electri i
. : t
Il field patterns, and (b) wall charges and r:urr(:n'fs.gu T &t 2_ab' i et
|| - - . 2b
expressions for the component values in terms of the dimensions of the % s o0

guide we require three conditions, namely:
portant to note that the dimensions of these expressions are henry

s, farads per metre and henries per metre, respectively. It is also
ant to note that (2.56) is not equal to the capacitance per unit length
Ween the broad walls of the guide regarded as a parallel plate capacitor.
5 underlines the point that the fields in a waveguide cannot be obtained
olving Laplace’s equation.

’ 1. The equivalent circuit must have the same cut-off frequency as the guide; !
2. The phase velocity calculated from the equivalent circuit must tend t(; '

| the veloi:ity of light in the limit of high frequencies; and .
3. The equivalent circuit must have the same characteristic impedance as

the guide.

Assuming that the phase change produced by the section is k dz the analysis

of the circuit shows 5
SRS 7 HIGHER-ORDER MODES IN A RECTANGULAR WAVEGUIDE

lion 2.5 we saw that a rectangular waveguide could be constructed by
g a conducting sheet along the null plane closest to the conducting

[T

L |
k= [ﬁ (0L, C — 1)] ; 2.52)
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Fig. 2.19 Higher-order modes in rectangular waveguide: (a) TE,;, and, (b) TEps.

plane in the field pattern shown in Fig. 2.10. We could just as easily have
chosen any of the other null planes for this purpose. This would have led to
other possible solutions for the propagation of waves in the guide. Figure
2.19 shows the next two such modes with their cut-off wavelengths (A, =

2nc/w,). Each has a longitudinal null plane and a transverse electric field
described by

neral for a TE,,,, mode

that all the modes obey the equation

E, = E,sin (m) cos (wr — kyz), (2.58)
4 K=k — k2,

where n =1, 2, 3, etc. We could, instead, have chosen to study modes with
their electric fields in the y direction so that

E, = E;sin (mnx

b

where m = 1, 2, 3, etc. With such a proliferation of modes it is desirable to
have a way of referring to them. The usual notation is to call them TE, .8
modes where m and n have integer values. On this basis the mode discussed
in Sections 2.5 and 2.6 is the TE,,; mode and those shown in Fig. 2.19 are
the TE, and TE; modes. It is natural to ask whether modes can exist for
which m and n are both non-zero. A complete solution of the electro-

) cos (Wt — kyz), (2.59)

waveguide WG16

o . 2.20 The TE,; mode in rectangular waveguide.

field pattern must satisfy the wave equation (2.4) so that

i 2
(%) o (%) + k% = K.

()

2 2

i (2_ﬂ)2 = (@) " (E.{‘_) |
¢ A b a

ion (2.64) is a generalization of (2.35). It can be seen from (2.65)

decreases and therefore the cut-off frequency increases as m ?ll'ld n

¢. The mode which has the lowest cut-off frequency of all is the

ode discussed in Sections 2.5 and 2.6. Table 2.3 shows the cl_lt-off
ncies for some of the lower modes in standard WG16 waveguide.

Table 2.3 Cut-off frequencies of TE modes in

magnetic wave equation for transverse electric waveguide modes (Ramo

et al., 1965) shows that this is indeed the case. Figure 2.20 shows, for - Mode i, Cm'offonguency
example, the field pattern for the TE,, mode. It is useful to be able to
sketch field patterns for the different modes because it is then possible to 0 1 6.55
write down the equations which describe them by inspection. Thus from 0 2 }2;‘1)
i 1 0 .

Fig. 2.20 we get 4 i 16.10
' 0 3 19.65
E,=E, cos (E) sin (ﬂ) cos (wt — kyz) (2.60) 1 2 19.69
b a ] 3 24.54
T 2 1 30.13
and E, = E, sin (jbi) cos (-T:Il) cos (wr — kyz). (2.61) 2 2 32.20

HIGHER-ORDER MODES IN A RECTANGULAR WAVEGUIDE 45 \

(2.62)

(2.63)

(2.64)

(2.65)
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The relationship between the amplitudes of the x and y components of
the electric field can be obtained by making use of Maxwell’s equation

(1.5) which is it— () -
A
OE, . OE (C g l*’\\
i PO e
By T 3 0 (2.66)
since there is no free charge within the waveguide and E, = 0. Substitution ©O——E S

from (2.60) and (2.61) yields

25 22 () (2) ] -0 o

so that E, = —% E,. (2.68)
A little thought shows that this result is equivalent to saying that the elec-
tric field lines must all start and finish on the walls of the guide. This means
that the amplitudes of the fields at the centres of the walls must be in
inverse ratio to the widths of the walls.

The magnetic field pattern of a mode can be obtained in a similar way by
substituting the electric field into Maxwell’s equation (1.8). For the TE,
mode the result is

:"1 g, 2.21 The TM;; mode in rectangular waveguide.

pagate in a waveguide? The answer is that they can. Like the TE waves
'y are actually the result of the superposition of plane TEM waves.
nfortunately there is no simple construction like that used for TE waves
which the TM mode patterns can be deduced. The problem is that
ough a conducting sheet can be introduced parallel to the conducting
in Fig. 2.14 it is not possible simply to add a further pair of planes at
angles to the first. This is because the tangential component of the
ic field cannot be zero on them.

he full solution to the wave equation for the TM modes can be found in
dard texts (Ramo et al., 1965). Here we shall proceed by sketching the
patterns and observing that the fields can be deduced from them as
ore. Figure 2.21 shows the field pattern for the TM;; mode. This is, in

—jwB = aﬁ}x a’?t-). 6!?3:: , the lowest frequency TM mode because modes with m or n = 0 cannot
E E d 0 sfy the boundary conditions. It is easy to show that the TM modes must
N 4  satisfy equations (2.64) and (2.65) so that their behaviour is just like
= [_B_E)i]j. 3. [6EX]J3 + I:BEX _ %Jf of the TE modes.
0z 0z dy oz | /e are now in a position to explain the operating bands quoted for

dard waveguides in Table 2.2. Operation in the TE,; mode ensures
that is the only mode which can propagate; all the others are cut off.
the frequency approaches the cut-off frequency the guide becomes
asingly dispersive. From equation (2.42) we find that the group

locity is

Substituting the expressions for the electric fields gives

jkya . . [nx AR
H, = mg E,sin (?) cos (_a_) sin (wrf — ky2)

_Jk mx\ . [my\ . : |
H,= m_piEl cos (?) sin (—;) sin (wt — ky2) (2.71) ve =[1 - (wc;’w)z]ic. @.73)
i [nE, maE, X Ty e b_ottom of the frequency bz_md quoted for a waveguide the group
md  H, “oml a b2 |08\ g )cos\ ) cos(wr—kgz).  (2.728 ty is 60% of the velocity of light.

€ upper frequency limit is set by the need to ensure that all the higher
modes are well beyond cut-off. Table 2.3 shows that cut-off frequency
e TE, mode in waveguide 16 is a factor of 1.05 above the highest
g frequency of the guide. From equation (2.64) we find that the
gation constant is 82jm~'. At the same frequency the propagation
tant of the TE(; mode is 223 m™!. The attenuation of the evanescent
mode signal in one wavelength of the TE,, mode is 46 dB.
i€ useful bandwidth of a rectangular waveguide is therefore governed

These expressions can be derived by solving the wave equation (2.3) subject
to the appropriate boundary conditions but the approach given here has.
the advantage of being tied more closely to an intuitive understanding of
electromagnetic phenomena.

So far we have only considered transverse electric modes. Section 2.4
demonstrated the existence of transverse magnetic modes when plane
waves are incident obliquely on a conducting plane. Can such waves pro
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by the separation between the cut-off frequencies of the lowest and next to
lowest modes of propagation. The aspect ratio of 2: 1 which is commonly
used makes the TE,, cut-off frequency a little higher than that of the TEy,
mode. It is therefore close to the ratio of dimensions which gives the
maximum possible bandwidth.

% )

2.23 Single- and double-ridge waveguides.

2.8 OTHER WAVEGUIDES

Although all the discussion so far in this chapter has been about rectangular
waveguides it is obvious that any conducting pipe can act as a waveguide
with properties similar to those of the rectangular guides. Two which are
commonly encountered are the circular and ridge waveguides.

The circular waveguide has the special property that no plane containing
the axis is distinguishable from any other. As a result different polarizations
of a TE mode have the same cut-off and guide wavelengths. This property
is employed in the rotating joints used in the waveguides feeding radar
antennas. It is also used to make accurate attenuators and phase shifters as
we shall see in Chapter 4.

The analysis of modes in circular waveguide requires the use of cylindrical
polar coordinates (see Appendix B). The suffixes which describe the modes
of propagation refer to the number of nodes in the tangential (8) and radial ;
(r) directions, respectively. Figure 2.22 shows a few of the modes which
exist in a cylindrical waveguide. Details of the fields and the cut-off wave-
lengths for the different modes can be found in Ramo et al. (1965).

In the previous section we saw that the useful bandwidth of a rectangular
waveguide is limited to around 1.5: 1. For some purposes this is incon-
venient. In order to increase the useful bandwidth we need to increase the

Null

O~ H

jg, 2.24 The TE,, waveguide mode in a coaxial line.

paration between the cut-off frequencies of the TEy;, and TE, modes.
equivalent circuit shown in Fig. 2.18 suggests a possible way. If a ridge
ded to the centre of one, or both, of the broad walls of the guide, as
n in Fig. 2.23, then the effect on the TE,; mode will be to increase
the shunt capacitance and the shunt inductance shown in Fig. 2.18.
consequence is that the cut-off frequency of this mode is lowered. The
mode, however, will be little affected because the ridges are in regions
Wweak electric field. The price paid for the increase in bandwidth is a
tion in power handling capability. At low power levels two-wire lines
e a more compact means of broadband signal transmission, but
waveguides are useful where a combination of broad-bandwidth and
erately high power is required. The notation for modes in ridge wave-
2 is the same as that used for rectangular waveguides.

1s not always appreciated that two-wire lines can also support higher-
modes of propagation. Figure 2.24 shows the TE;; mode for a coaxial
Like any other waveguide mode this has a lower cut-off frequency and
de wavelength which obeys equation (2.64). The useful bandwidth of
tial line is much greater than that of a waveguide because the lower
ff frequency is zero. The presence of higher-order modes provides a
Wit on the highest frequency for which a line can be used.

Null

N ——e

(C} ———H

9 CONCLUSION

chapter we have seen how electromagnetic waves are guided by
ucting surfaces. The TEM waves which propagate in free space combine
‘N reflected off a conductor to give waves which can be classified as

Null
Fig. 2.22 Modes in circular waveguide: (a) TE,,, (b) TMy,, (c) TE,, and, (d) TMy;-
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either TE or TM. Waves of both these types can propagate down metalljg
tubes at frequencies above some cut-off frequency. The phase velocities of
these waves vary with frequency so that pulses formed of groups of waveg
of different frequencies are dispersed as they travel down the waveguide,
The phase velocity is always greater than the velocity of light but it is foung
that information and power propagate with the group velocity which is lesg
than the velocity of light.

Waveguides can support an infinite set of higher-order modes. The usef
bandwidth of a waveguide islimited by the need to avoid excessive dispersion
on the one hand and multi-mode propagation on the other. Rectangula
waveguides are most commonly used but other cross sections including
circular and ridge waveguides are valuable for special purposes. Two-wire.
transmission lines can also support higher-order modes.

EXERCISES
2.1 Calculate the dimensions of the following 50 Q transmission lines:

1. Coaxial cable with polythene dielectric (g, = 2.25) and an inner
conductor diameter of 1.5 mm. :
2. An air-spaced parallel-wire line with a conductor diameter of 5 mm.
3. A triplate line with alumina dielectric (e, = 8.9) and centre con-
ductor width 2.5 mm.

2.2 Calculate the cut-off wavelength of the WG10 waveguide and the guide
wavelength at 2.5, 3.0, 3.5 and 4.0 GHz. Plot a dispersion diagram for
the waveguide and compute the phase and group velocities at 3.0 GHz.

2.3 Find an expression for the stored energy per wavelength in a rectangular
waveguide and show, by comparison with (2.49) that energy propagates
down the guide at the group velocity. ]

2.4 Calculate the cut-off frequencies of the TEq,, TE; and TM,; modes in
a WG10 waveguide.

2.5 Calculate the characteristic impedances of waveguides whose heights
are 2.0, 4.0, 6.0 and 7.9 mm and whose width is 15.8 mm.

2.6 Calculate the cut-off frequency and characteristic impedance of WG12
waveguide when it is filled with: 1. air at atmospheric pressure and,
2. paraffin wax (g, = 2.25). '



