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mg. 10.1 General arrangement of a microwave linear beam tube.

nd, finally, the relationship between the charge density and the space-
harge field are given by Poisson’s equation

V-E,. = olg. (10.4)

Jote that these four equations involve four dependent variables so, in
rinciple, they can be solved. As a first stage of smphﬁcatmn let us assume
hat the electrons are moving parallel to the z axis and that the beam
xtends to infinity in the transverse direction. We will also assume that all
quantities vary only with z and with time. The four equations then become

aJ _ _de
9z ot

dv _ Bv av

oti — = 10.6
Many high-power microwave amplifiers depend for their operation uj viotion T +:V 9z n(E: + Eg), (10.6)

linear electron beams which are constrained to pass along their axe
shown in Fig. 10.1. The amplification of the devices depends up
exchange of energy between the electron beam and the electric fi
microwave circuits surrounding it. The equations which govern the
of the electrons are, first, the continuity equation (1.15)

10.1 INTRODUCTION

In this chapter we consider the interactions which occur between elegi
magnetic waves and electrons moving in a vacuum. These phenomena
important applications in the generation of high-power radiation at mi
wave frequencies and above. There is not enough space in this be
discuss the technical details of these devices. The emphasis is on the fur
mental processes involved. For greater detail reference should be n
to the books and papers listed in the bibliography. (10.5)

10.2 SPACE-CHARGE WAVES

where the expansion of the left-hand side recognizes that the rate of change
;a the velocity of the electrons can be expressed as the sum of the rate of
hange with time at constant position and the rate of change with position
s the motion of the electron is followed. The current equation becomes

V .J _ _a_g J= ov, (10.7)
or’ and Poisson’s equation is
where J is the current density and o the charge density; and sece IE,. / (10.8)
Newton'’s second law of motion il :

In these equations the vector quantities J, v and E are a}l assumed to
ssess only z components. The set of equations is non-linear because

(10.7) contains a term which is the product of two variables.

- The next stage is to linearize the equations by assuming that all the

dependent variables can be written in the form

dv
+
o - E: + Ey), ( :

where n is the charge-to-mass ratio of the electron and E. and E,. a e
electric field applied to the beam and the field arising from the Sf
charge of the electrons. Next we note that the current is related t0

charge density and the velocity by a = ag + a, exp j(wt — kz), (10.9)

J=ov Where a, < g, and o and k are the same for all variables. The second term
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assumes that the equations have wave solutions. The small-signal equa .;_;_ o Fast wave
are then Slow wave
kJy = we (10.1
jlo — kvgvy = n(E. + E) (10.1
Ji=0ov) + 01vo (10.1 Wy
and _]kEsc = QI"JEO- (10. — k
For the moment we will assume that the field of the external circuit is —w,
so that E can be eliminated between (10.11) and (10.13) to give /]
I &. (10__‘ 10.2 Dispersion diagram of space-charge waves on an electron beam.
ke ;
Similarly J, can be eliminated between (10.10) and (10.12) to give
] 1 vy + vi)? = q(Vy + V1). (10.20)
(0 — kvo)or = kv (10.1: : .
; : y 2 4 For small signals the left-hand side can be expanded to give
These two equations can be satisfied simultaneously only if 2
2 l v+ 2vvy = 20(Vo + Vi), (10.21)
(w — kvg)® = noo/e.

where the second-order term v1 has been neglected. This equation is true
at all times and so the a.c. and d.c. terms must balance separately to give

3 Vl = V{)'y"lll'r'l] (10.22)
and Vo = va/2n. (10.23)

The terms of this equation have the dimensions of angular frequ
squared so we will set '

wp = meo/eo. (10.1

The physical significance of this frequency can be understood by consideri

the case when the electrons have no d.c. component of velocity so tha Dividing (10.22) by (10.23) yields

Vi ¥ (10.24)

W = 0, ‘ :
‘ Vo 2vg

If a stationary cloud of electrons which is in equilibrium is disturbed thel
will oscillate with the frequency given by (10.18). Such a cloud of electr

is known as an electron plasma and w,, is known as the plasma frequene transmission line equation

The possible solutions to (10.16) can therefore be written P =iV, It. (10.25)
ko= 0% wp ke F k. (10.1 From (10.10) and (10.12) the a.c. current is
v .

. ¢ 1 (DQUA (10 26)

It is convenient to display these solutions in the form of a dispersion d Rl T TR '
o L oES 1 (o — kvp)

gram (see p. 38) as shown in Fig. 10.2. The slope of each line is equal :
the d.c. beam velocity vq. These lines represent two possible wave solutio Where A is the cross-sectional area of the beam and, making use of (10.16)
whose phase velocities are one greater than and the other less than vp. 1 nd (10.24), A v
waves are compressional charge density waves and are therefore known 2m00v% ; + ] @ o Vo ey
fast and slow space-charge waves. I = o 2 () ¢ Yo

It is often useful to represent these waves by equivalent transmission S g T

modes. To do this we define an a.c. voltage known as the beam kineé
voltage V; by invoking the principle of conservation of energy



so that the power flow in the two waves is

1|

Px = 2 Zi 5 (u}

where the plus and minus signs refer to the fast and slow space-char
waves, respectively. Their characteristic impedances are given by

V,

o Iy (10
Equation (10.28) reveals the surprising fact that the slow space-char
wave carries negative power. The direction of the power flow is certais
positive because, as Fig. 10.2 shows, the slow wave has a positive grg
velocity. The explanation of this paradox is to be found in equation (10.2
which shows that in the slow wave the a.c. current and velocity are
antiphase. Thus when v > v, J < J;), and when v < v, J > J,. It follg
that the average Kinetic energy of a beam carrying a slow wave is less th
the kinetic energy of an unmodulated beam. In order to set up a slow w;
it is necessary to remove power from the beam. This unexpected fea
the slow space-charge wave provides the key to understanding all kin
microwave linear-beam tubes. ¥
An analysis of the propagation of waves along an electron beam co;
fined by an axial magnetic field shows that there are two other mod
which can propagate whose propagation constants are given by '

W F

ke = = (103

Yo
where w. = nB is known as the electron cyclotron frequency. These way
are known as the fast and slow cyclotron waves. They are associated wi
motion of the electrons in circular orbits around the direction of the ax

magnetic field. A fuller discussion of cyclotron modes is given by Louise
(1960).

10.3 KLYSTRON AMPLIFIERS

The arrangement of a simple klystron amplifier is shown schematica
Fig. 10.3. The electron beam passes along the axes of two re-entrant
drical resonant cavities. At the centre of each cavity it crosses a gap W
it interacts with the alternating electric field of the cavity. Radio-frequen
power is fed into the first cavity setting up fields which modulate t
velocities of the electrons. To simplify matters we will assume that t
length of the gap is short and that at each end the electron beam pass€
through a grid of fine wires. These grids have the effect of confining all tk
gap field to the space between them. In practical klystrons grids cannot £

can be fepresented by equivalent gridded gaps for the purposes o;fw?nalys.lsa
" Figure 10.4 shows a pair of grids d apart with a voltage Vg e applie
‘across them. To calculate th o b e

velocity we consider an electron which crosses the centr ‘ _
] :stantywhen the field is a maximum. Between the grids the electric field is

‘uniform and equal to V,/d. The equation of motion is then

— ivsmonawumes ][ 255 |

Input Output
cavity cavity
] ‘ L Electron beam
s e —
_
r.f.in r.f. out

Fig. 10.3 Two-cavity Klystron amplifier.

] sed because they would not be able to withstand the power dissipated in

the electron beam. It can be shown, however, that gridless gaps

e amplitude of the modulation of the electron
of the gap at the

(10.31)

s0 that the amplitude of the velocity modulation produced by the gap is

Ve (* gjor 32
v = —d—g J el dt, (10.32)
| |
| |
| |
—d/2 | |di2 L
| [
| l
[ 1
vge]mr

Fig. 10.4 Gridded gap for velocity modulating an electron beam.
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1 MVy

-37Z (e*e? — e ko2 exp j(wt — ke2)

which it leaves. If the change in velocity is small compared with the d =

velocity v, then

MV, | ;
z = vyt = —]T‘E sin kpz exp j(wt — k.z). (10.42)
so that From these two equations it can be seen that as the waves propagate down
NV, [42 5 ] ‘the beam the amplitudes of the voltage and current modulations change
W1 = Vod d.-zcl ** dz, (10.34 sinusoidally. The wavelength of these standing waves is the plasma wave-

Jength given by

where k. = w/v,. Carrying out the integration we obtain 2n
‘ A, = —. 10.43
_ Vsin (ked12) W s e

1

vy kel us, at a distance h, from the input gap the voltage (i.e. velocity) modu-

This can be expressed in terms of the beam kinetic voltage by using (10.22 lation is zero and the current modulation is a maximum. At this plane the

to give ’ \ arge density in the beam varies sinusoidally with time and the beam is
Vi= MV said to be bunched.

1 g When a bunched beam crosses an interaction gap it induces a current

where in the gap. The way in which this happens can be understood by con-

ering Fig. 10.5. A bunch of electrons induces positive charges on the
orids bounding the gap. As the bunch moves across the gap the induced
charges redistribute themselves flowing from one grid to the other through
the external load R. The charges shown in the diagram should be regarded
as a.c. charges, that is they are charges relative to the d.c. level. Half a
cycle later than the situation shown in the diagram the charge in the gap
will be less than the d.c. level so it can be thought of as a positive a.c.
charge. The induced charges will then be negative and the induced current
will flow in the opposite direction.

" The flow of induced current through the external load resistor produces
a potential difference across the gap and an electric field in the direction
own. This field acts to slow down the electrons in the bunch. The energy
moved from the beam is dissipated in the load resistance. This fact en-
ables us to calculate the relationship between the induced current and the

’9(' R
E | ®
®

|
ot~ |
|

_ sin (k.d/2)

k.d/2
is known as t_he gap coupling factor. For an ideal narrow gap d — 0 an
M — 1. Physically the coupling factor takes account of the change of the

strength of the electric field during the time it takes for an electron to cros
the gap. The current is continuous so :

I =o0. (10 i

Equations (10.36) and (10.38) are the boundary conditions governing th
launching of space-charge waves by the gap. Now the general solutions fo
wave propagation of the beam are

Vi =V, expj(or — k.z) + V_exp jlor — k_z)  (10.39

Z.

" S ;
and I = Z=exp (ot — ky2) — —=exp j(or — k_2), (10.40

wher!e‘kt and Z. are given by (10.19) and (10.29). Using the boun
conditions we see that V.. = 3V,. The kinetic voltage and current on t
beam are therefore )
Vi = sMV,(e* + %) exp j(wt — k.z)
= MV, cos k,z exp j(wt — k.z),

—df dr2

z

10.5 Induction of current by the motion of a bunch of electrons across a

where k. = w/vy, kp, = w,/vy, and ded gap.
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a.c. component of the beam current. At the moment when the centre ;_;
the bunch is at the centre of the gap the charge distribution in the gap j

given by sink.d/2

; 10.51
k.d2 ( )

p Mi =
o(z) = Ii(2)/vg

since the a.c. component of velocity is zero when sin k,z = 1. From (10.44

t can be shown that these coupling factors are also valid for the input gap.
we can write

The power required to modulated the beam is therefore the difference
petween the power carried by the two space-charge waves

o= s [ (45 - (455
"2z, 2 2

13
&z

Ll A
o(z) = Iv—" i (10.45

4]

since k, < k. so that the sine term in (10.42) is very close to unity.
force on an element of charge within the gap is then
)

F= Ey(z)dz

—di2

(M2 — M?). (10.52)

so that the rate at which energy is being extracted from the bunch is Thus the beam appears to the input gap as an impedance

4Z.
Ry, = m (10.53)
he beam loading of the gaps also has a reactive component which only

serves to tune the resonances of the cavities slightly.
The complete two-cavity klystron can be modelled by the equivalent

di2 ]
Fvy = f E|L|e % dz,
di2

But this must exactly balance the rate of dissipation of energy in the loa
given by 1,V,. Thus

LV, = Ye |1;] J’ - e W dy (1 circuit shown in Fig. 10.6. The various resistive components are represented

4 —di2 E by their conductances (G = 1/R). Thus G, is the source conductance, G

so that he load conductance and Gy, the beam-loading conductance. The con-
. Juctance G, represents the impedance of the cavity resonators. If these are

L= L sin ked/2 assumed to be tuned to the signal frequency then G, reprc§ents the cavity

: ked/2 y es. The magnitudes of the conductances are chosen to give the cavity O

I, = M|I|. (10.4¢ ors appropriate to the bandwidth required. The loaded Q of klystron

ities is typically around 100. The input and output cavities are matched

Thus the gap coupling factor also controls the effectiveness with which B oiirce and load when

beam drives the gap. It should be noted that the modulated beam behave
as a near-ideal current source. ;

In the derivation of equations (10.36) and (10.49) we have neglected th ey
space-charge forces. This is justifiable because the space-charge field | a0 )
normally much smaller than the gap field for both input and output ga . o Gs
There is, however, one factor which this analysis does not reveal because | G.
supposes that both space-charge waves are excited with equal amplitudes e R s
Since in that case they carry equal and opposite powers it would appea _l:|_G_b
that no power is needed to modulate the beam and the power gain of
device must be infinite. If the analysis of energy extraction from the bear y
were repeated taking account of the difference between the space charg 6 —L— (L

waves the result would be S

g. 10.6 Equivalent circuit of a two-cavity klystron amplifier.

I,= M1 + M_|1_|
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Gy = G+ Gy =Gy (10 " A 8 ? [I}
The input gap voltage is then on ' I ! ! {
V, = 3L/G, (10.53 Retarding ‘%
and the input power is - 7 _—_qL"“‘/E_\—{:
Pi, = $1/G,. (10 Accelerating M
From (10.42) the amplitude of the a.c. beam current at the output gap 0 mo - Zlkp

?

L =M VJZ,

so that the output power is Input gap
1 2 o 10.8 Motion of electrons with velocity modulation relative to the average
Lo Eerlr G, (10 e .
! ron velocity.

whence the power gain is

Pout m* described above. The gain at frequencies other than the centre frequency,

P, 4G2Z% or when the cavities are not all tuned to the same frequency, can be com-

mn BE o

For typical values of the parameters the gain would be in the region of 1 '_
20dB. ‘
The gain of a klystron can be increased by adding more cavities at i
tervals of A,/4 as shown in Fig. 10.7. The loads of the second and
cavities do not dissipate much power. Their function is to adjust the Q|
the cavities to give the desired bandwidth. The velocity modulation at th
input gap produces current modulation / at the second cavity. The induce
current in that cavity produces a gap voltage which, in turn, produces
velocity modulation V. Because the electron beam is a linear syste
small signal levels this modulation is added to that already on the beal
The gain between the first and second cavities ensures that this modulatig
is stronger than the initial modulation. At the third cavity the modula
produced by the first cavity appears as pure velocity modulation whilst
from the second cavity produces current modulation /5. The process
is exactly like that at the second cavity so that a velocity modulation
added to the beam. This is the dominant modulation at the output ca:
where it produces a current modulation /. Thus the gain of a multi-ca
klystron can be computed by a straightforward extension of the metho

by o i i

—5 |

I - L
N v

t

|

suted by using matrix algebra to represent the cavities and the drift regions.
' The interchange between velocity and current modulation can be rep-
esented graphically as shown in Fig. 10.8. This figure shows the phases at
which a number of sample electrons cross planes along the le_ngth .of the
beam. The phase is referred to the phase of an electron travellm_g_ with the

¢. beam velocity. The slopes of the trajectories show the velocities of the
slectrons relative to vy. ‘

At the input gap (A) the trajectories are equally spaced sl_lowmg no cur-
ent modulation but their slopes differ because of the velocity mn_dulat‘lon
sroduced by the gap field. As the electrons move t_owards B their tra]ec-‘
tories converge. This process is resisted by the repu_lswe spafze-charge force_s
0 that at B the trajectories are parallel to the axis. At this plane ther_e is
therefore no velocity modulation but a maximum of current modulation.
ollowing the motion forward we see that the spacejchargf: forces cause
e trajectories to diverge giving velocity modulation without current
modulation at C and so on. From the point of view of an obser‘ver _travel-
ling with the d.c. beam velocity the electrons are executing DSC1}]at10ns at
the plasma frequency about their mean positions. ”_Fhe separation of th_e
planes at which the velocity and current modulations are maximum 1s
therefore equal to A,/4 and is independent 01? the strength of the rnodula.tmn.
~ Clearly it is not possible for this situation to continue at ever h']gher
Signal levels. Eventually the process becomes non—lmea,r_and the simple
theory given above breaks down. This is illustrated by Elg. .10.9. As the
signal level increases the plane at which the current modulationisa maximum
moves back towards the input gap so the optimum drift _length is less than
Ap/4 (Fig. 10.9(a)). When the signal level is increased still further some of
the electron trajectories cross over each other (Fig. 10.9(b)). Once crossing

|
1
1l
I

|

t

| | |
Vi la Va I3 V3 14

Fig. 10.7 Schematic diagram of a four-cavity klystron amplifier.
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@ (b) Helix

Fig. 10.9 Motion of electrons with velocity modulation showing: (a) shorteni
the bunching length, and (b) electron crossovers at high modulation levels.

Shield

Dielectric
support rods

P ouT

(dB) 4 ){ /£
Paar Gain compression

(b)
ig. 10.11 Helix slow-wave structure: (a) elevation and, (b) end elevation.

lese waves are non-resonant the interaction can take place over a much
ider band of frequencies than in a klystron. In order for an electron beam
0 interact with a travelling wave it is necessary that the phase velocity of
he wave should be approximately the same as the velocity of the electrons.
Waves propagating in a hollow waveguide have phase velocities greater
han the velocity of light. They are therefore unsuitable for travelling-wave
nteractions. To produce a suitable wave we must use a slow-wave structure
f which there are two main types.

The first is the helix shown in Fig. 10.11. Modern TWTs generally use a
ape helix as shown in Fig. 10.11(a). This helix is mounted within a con-
entric conducting shield by means of dielectric support rods as shown in
ig. 10.11(b). The result is a rather special kind of coaxial transmission
ne. At high frequencies the signal follows the turns of the helix travelling
it about the velocity of light. The velocity of the wave along the axis is then

Vp = € sin . (10.60)

* Py (dB)

Fig. 10.10 Transfer characteristic of a klystron showing saturation at high
levels.

over has occurred the effect of the space-charge field is to force the el
still further away from the bunch. This process sets a limit to the max
bunching which can be achieved and thus to the maximum output po
and efficiency of the device. Figure 10.10 shows the typical form of
transfer characteristic of a klystron. At low signal levels the device is a t
linear amplifier over a wide dynamic range. §

At high signal levels the output saturates as shown. The gain compress
at saturation is about 5dB. For maximum efficiency a klystron m
operated at saturation and this is normal for tubes used for radar
mitters which use an unmodulated carrier. For communications §
such as television transmitters the tube must be operated below sat
in order to avoid non-linear effects.

At low frequencies the wave tends to skip from turn to turn of the helix and
phase velocity tends to the velocity of light. Figure 10.12 shows the
lispersion diagram for a helical slow-wave structure. The useful bandwidth
f such a slow-wave structure is limited by its dispersion at low frequencies
nd by possible interaction with other modes of the helix for phase shifts
reater than about 180° per turn. A bandwidth of an octave is readily
itainable. By using dispersion shaping techniques (Webb, 1985) it is poss-
Dle to make tubes which give useful gain over bandwidths greater than
4Ice octaves.

- The second main class of slow-wave structure can be thought of as a

10.4 SLOW-WAVE STRUCTURES "

A klystron works through the interaction between an electron beam al
resonant, standing, electromagnetic waves. Travelling-wave tubes (TW
on the other hand, employ travelling waves as their name suggests. Becau
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Fig. 10.13 Folded waveguide slow-wave structure: (a) cross-sectional view,

(b) transmission-line equivalent circuit.

folded waveguide as shown in Fig. 10.13(a). The wave travels along

folded guide with a phase velocity greater than the speed of light

phase velocity in the axial direction is much smaller. This structure ca

Tnodelled as a transmission line with alternate sections having di
impedances as shown in Fig. 10.13(b). The discontinuities at the j

between the sections of line produce coupling between the forwar
backward waves with stop bands wherever the structure period is ail

tegral number of half wavelengths. The dispersion diagram for a co
cavity slow-wave structure of this kind is shown in Fig. 10.14. In this

¢ is the phase shift per section along the folded waveguide. The dispe!
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s, 10.14 Dispersion diagram of a coupled-cavity slow-wave structure in terms of
hase shift along the folded waveguide.

m

urve is basically the same as that for a hollow waveguide (Fig. 2.16) with
ropagation at frequencies above the cut-off frequency w.. At the edges of
he stop band the group velocity is zero. This corresponds to a situation
here the effect of reflections at the discontinuities is to produce forward
backward waves of equal amplitude, that is, standing waves. There are
possible standing waves: one with the maximum electric field across
centres of the cavities and the other with the maximum across the
entres of the coupling slots as shown in Fig. 10.15. Any general wave can
e thought of as a combination of these two normal modes. The two modes
¢ the same wavelength as each other but different frequencies. The
tive frequencies depend upon the relative magnitudes of the impedances
of the sections of line.

For practical purposes it is the phase shift per cavity along the axis of the

S L

(b) Vv

. 10.15 Field patterns at the edges of the stop band in a coupled-cavity slow-
Wave structure.
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' pe synchronous with the circuit wave at the point A where both the
oup and phase velocities of the circuit wave are positive. The interaction
_then similar to that occurring with a helix slow-wave structure.
' The significance of the different parts of the curves in Fig. 10.16 becomes
warer if we consider the axial electric field for a particular frequency and
e shift per cavity. Figure 10.17 shows the axial field in one cavity at
e intervals corresponding to phase shifts of 60°. If we assume that the
o shift per cavity is also 60° and plot the fields of adjacent cavities the
t is a shown in Fig. 10.18. This combination of fields may be expressed
s a Fourier series in space and the fundamental component is evidently a
ve travelling in the positive z direction as shown by the broken curve in
10.19(a). At the moment illustrated the magnitude of the field at A is
asing whilst that at B is decreasing both of which are consistent with a
undamental Fourier component travelling to the right.
‘The next Fourier component is shown in Fig. 10.19(b). From (10.61) this
phase shift per cavity of —300° (n = —1). Consideration of the fields
and B shows that this wave is travelling in the negative z direction as
n. This is consistent with the negative value of phase shift per cavity
omputed from (10.61). The wave shown in Fig. 10.19(b) is described as a
pace-harmonic wave. The complete interaction field can therefore be de-
cribed in two ways: first as the superposition of a set of standing waves and
econd as the superposition of a set of travelling space-harmonic waves.
for waves propagating in a lossless structure these descriptions are entirely
quivalent to each other. In terms of Fig. 10.16 the fundamental waves are
1 the region —n to 7 whilst the first space-harmonic waves occupy the
gions (—2x, —) and (i, 2t). Thus the fundamental forward-wave branch
t A in Fig. 10.14 gives rise to a fundamental backward-wave at B in Fig.

—2% = 0

Fig. 10.16 Dispersion diagram of a coupled-cavity slow- p ;
phase shift per cavity. pled-cavity slow-wave structure in terms

slow-wave structure which matters rather than th i \
: ‘ e phase shift along |
fo]lded_wavegulde. A little thought shows that the folding of the
guide ;ntroduces an additional phase shift of 180° per section. Elex "
travelling along the axis of the structure experience the interaction fi¢

only when they are crossing a cavit : ; A
y. The phase shift
electrons may therefore be written 2 perceiveliggy

0 =0y + 2nm, (10

where n = 0, £1, £2, £3, etc. and 6, is the phase difference between t
ficlds at the centres of adjacent cavities. The dispersion diagram of the slo
wave structure can therefore be plotted in the form shown in Fig. 10.1
The d1fferent branches of the dispersion curve are repeated periodi.call
both directions by virtue of (10.61). The velocity of the electrons is ch os

i R o
z I | |
| I | wot=0
wt=0 | | T
[ [ !
z | llv
| I
: 2 wt = m/3 ll || !I o=
z [ | | i
| | |
_ | | |
ot = 21/3 | | | wt = 2n/3
z | | | "
: ; | | ¢
| | I
| | |

Fig. 10.17 Axial electric field of an interaction gap at different times in the

cycle. 10.18 Superposition of the electric fields of adjacent interaction gaps at dif-

nt times in the r.f. cycle.
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with the wave carried by a hypothetical, uniform, slow-wave structure. The
electrons are assumed to be constrained by a strong axial magnetic field so
that they can only move longitudinally. The fringing field of the slow wave
has an axial component of electric field which interacts with the electrons.
If the whole system is viewed in a frame of reference which is travelling
with the wave then the effect of the interaction is to cause the electrons to
‘pecome bunched as shown in Fig. 10.20(b). To a stationary observer these
current bunches appear as an a.c. current modulation of the electron beam.
The electron bunches induce charges on the slow-wave structure which

(a) A M ~

72\ A‘\*“— = { ‘must move along the structure in synchronism with the wave. Moreover,

’ \ // AN | / - since the bunches are negatively charged, the induced charges have the

©) L/ LI N ‘same polarity as those arising from the original slow wave and add to them
B to produce growth in the signal level along the length of the tube. The

bunching process is limited by the forces of mutual repulsion between the
electrons. The principle of conservation of energy requires that the elec-
trons should lose kinetic energy as they transfer power to the wave on the
circuit. Eventually this causes the desired synchronous relationship between

Fig. 10.19 Fourier coefficients of th i i II.
; . e electric field in a coupled-cavi ;
structure: (a) forward-wave fundamental, and (b) backward-\gave :S;i:ghﬂo

10.16 because of the phase reversal in i

. s s troduced by folding the w:
The electrons interact with the first forward-wave space-iarmon‘;:c
wave at the point A in Fig. 10.16.

10.5 TRAVELLING-WAVE TUBES

Before proceeding to a theoretical analysis of the travelling-wave ‘

useful to ob.tain a physical understanding of how it works. Figure 10
shows a uniform stream of electrons which are travelling synchronol

ik —— 4+

el NS AN W
s iy,
0 N\ 77NN //‘\\%

SEa S +4+

Tt e e

=) N RS A
N T S
N 7\ /7 /‘\<f;

it S +++

(b)

Fig. 10.20 Electron bunching in a lrave_l]ing wave tube: (a) electric field
(b) phase relationship between the interaction field @

slow-wave structure, and
the clectron bunches,

‘the electrons and the wave to be lost so that the maximum conversion of
‘energy from d.c. to r.f. is limited.

For the purposes of analysis it 1s convenient to represent the slow-wave

structure by an equivalent transmission line as shown in Fig. 10.21. The
inductance and capacitance per unit length of this line can be chosen to
‘make it equivalent to a helix at any given frequency. The propagation
of waves on the line coupled to the electron beam are governed by the
_equations

ol oV i

e g 0.6
0z & ot 0z (082)
oV ol

oz ot R

There are identical to the usual transmission-line equations (Carter, 1986)

- with the exception of the last term in (10.62) which reflects the fact that an

a.c. current i on the electron beam induces a current on the slow-wave
structure and that the total a.c. current on the system must obey Kirchhoff’s

(v.i) 2 >

~ Fig. 10.21 Schematic diagram of a travelling wave tube.
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current law. If we as: g , i : |
ssume that waves propagate on the coupled system and integrating across the cross sectional area of the electron beam gives

exp j(wt — kz) then we obtain
jkI = joCV — jki
KV =jolLl

and, eliminating /, we obtain

! ; jwvg ILE.

4 = 10.74
' ! w; — (0 — kvg)? 2V, ( )
1 which the d.c. and a.c. currents replace the corresponding current

nsities.
For self consistency equations (10.66) and (10.74) must be satisfied

V= Lot i smultaneously so that the possible values of the propagation constant k are
kizj = fr (10- :'.'. en by
where
. (k3 — K3J[k3 — (ke — k)] = —k.kokzliz—“. (10.75)
ko = of(LC) (10.6 B R

his equation is known as the determinantal equation of the system. If the

is the natural propagation constant for waves on the line in the absence @ :
pupling term on the right-hand side of the equation is set to zero the roots

the electron beam and

Zy = Y(LIC) (10,6
is the characteristic impedance of the line. Notice that the inductance :._;

capamtancc‘ per uni? length have been replaced by quantities which ha
more meaning at microwave frequencies.

The interaction field is related to the voltage on the line by

k= *ko (10.76)
the forward and backward waves on the transmission line) and
k=k.tkp (10.77)

(the fast and slow space-charge waves on the electron beam). These sol-
ations are shown in the dispersion diagram in Fig. 10.22. The interaction
which produces gain is that at A between the forward circuit wave and the
slow space-charge wave. We have already remarked that the slow space-
charge wave is excited by removing energy from the electron beam. It is
herefore possible for energy to be transferred from this wave to the wave
on the slow-wave structure in such a way that both grow with distance.

" The full solution of the coupled equation (10.75) requires the use of a
computer but a useful approximation can be derived by assuming that only
coupling between the slow space-charge wave and the forward circuit wave

oV 4
By —2f i
( dz ] kV (10‘_’

so that

. kzkl']ZI] 1
kg — k>
13.& set.:ond relationship between the a.c. current on the beam and the a.¢

circuit voltage can be derived by considering the electron beam dynan ¢

starting from equations (10.10) to (10.13). Eliminati
: sl ) n fi
(10.12) and from (10.10) and (10.13) yields g ¢, from (10.10)

EC = ( 10. .

(ke = kp) (ke + kp)

(w = kvo)J, = woyv, (10. —ko jw Ko
and o )
Ep=j—.
= Vo, (3
We also have ’
(o — kvg)v, = n(E. + E,). (10.11)
Eliminating the space-charge field and th i .
e a.c. ~ } K
(10.71) and (10.72) gives o velocly from ({1 /

- 10.22 Dispersion diagram of the uncoupled slow-wave structure and electron
beam modes in a helix travelling-wave tube.

_ jwvy JoE.
(”12“ — (0 — kvg)® 2V,

& (10.73)
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( k) k—%(k0+kp+ke) ; A
\4‘91' e + %[(kll B (kp ot kc))z - k“\an/ZC]E. (10.
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is important. First (10.75) is rewritten with the left-hand side expres 4
a product of four factors and the right-hand side rewritten in terms
beam characteristic impedance Z, (10.29) to give

(ko — K)(ko + K)(kp — ke + K)(Ky + ke — k) = _}M %0_ (10l

This can be rearranged to keep onl i i i L
y the two roots in which
on the left-hand side Weare iy

+f Z,, corresponding to a high interaction field for a given power flow, and
Z., corresponding to a high-current electron beam.

" The bandwidth of the interaction can be deduced by considering the
oints at which the imaginary part of (10.80) becomes zero, that is

ko — (kp + ke) \/(é)
__—L_V(kokg) z.) (10.84)
, The left-hand side of this expression is the normalized difference between
(k — ko)(k — ky — ko) = — ( kk, ) y% kp Ty 3 the propagation constants of the uncoupled waves. This increases with the
B k + Kk (k B P ) 7 (10.7 square root of the ratio of the circuit impedance to the beam impedance.
¢ RiaE=S Figure 10.22 shows that for a given value of this ratio the bandwidth increases
as the angle between the two intersecting lines decreases, that is, as syn-
chronism is maintained over a broader band of frequencies. In practice
these requirements tend to conflict as broad-band slow-wave structures
have low impedances.
" The information deduced in the preceding paragraphs enables us to
sketch the form of the dispersion diagram for the coupled system. This
takes the form shown in Fig. 10.23 with complex conjugate roots and gain
in the frequency range ©; < ® < ;.
" The theory of the coupled-cavity travelling-wave tube takes a slightly
different form because the interaction between the beam and the wave
is lumped rather than continuous. Figure 10.24 shows the coupled-mode
diagram for a coupled-cavity TWT. The mid-band gain of such a tube can
‘be estimated fairly accurately from (10.83) if the impedance of the correct
space harmonic is substituted for Z,. The analogy with the continuous
interaction breaks down at low values of phase shift per cavity when the
excitation of a backward wave becomes important.
* Helix TWTs typically have working bandwidths in the range from one to

Now we know that the roots of this equation must lie close to the roots
the l_eft-hand side, namely & = ky and & = k. + k,. We therefore 'f;‘
proximate the two brackets on the right-hand sidepof the equatioﬁ‘
substituting the two roots into them in the same order. The result is 4

(k — ko)(k — k, — k) = —% % (10 ."

This equation can be solved by the usual method to give

The solution reveals a num i i
e ber of important things about the travellin

If_ the term under the square root is negative k has a pair of com‘
conjugate roots. These correspond to a pair of waves one of which gr
exponentlally with distance whilst the other decays. The real part of ol
these roots is given by the first term which is just the mean of the ‘
uncoupled roots.

At synchronism k, = k. + k, and (10.81) becomes

c-nfis (2]

The imaginary part is then a maximum so the maximum gain per wave-

length is given by
Gain = 20 log,, [exp n\/(?)]

Z

= 27.3\/(—0) dB.

Z. (10.83)

Typically Z, is 50 to 100 times Z, giving a gain of around 3 to 4 dB per Fig. 10.23 Dispersion diagram of a travelling-wave tube showing the presence of a
i L . e . ) compl i i ; i i

wavelength. It is not surprising that high gain is obtained with high values spacg-iﬁacrzreu:gi? a[:lililrtl?ef fr:r(\):;rgr\?v(zjalxlrzegnbt}l(l;l}-neelli?:cracmn b el

1

B

Im(k)

¥

Off"ri(e )
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'-produccd by a pair of plane parallel electrodes. Here the electric and
‘magnetic forces balance and the electron moves in a straight line parallel
1o the electrodes. In practice it is convenient to make the electrodes con-
centric cylinders so that the electrons move in regular circular orbits. The
addition of space charge does not materially affect the electron flow so it is
possible to produce a rotating electron cloud as shown in Fig. 10.25(b).
Provided that the magnetic field is strong enough the clectrons do not
reach the anode and the diode is cut off. The electrons are usually emitted
from the whole of the cathode surface through a combination of thermionic
“and secondary emission.

By arranging that the surface of the anode is a slow-wave structure it is
possible to envisage interactions with the electrons analagous to those
taking place in a TWT. The mathematical analysis of this kind of device is
difficult and they normally operate in the non-linear regime anyway so we
will concentrate on the physical principles of operation.

The commonest device of this kind is the magnetron oscillator in which
the slow-wave structure is made in the form of a closed circle as shown in
Fig. 10.26. The anode and cathode together form a two-conductor trans-
mission line which can propagate TEM waves at the velocity of light and at
frequencies down to d.c. The forward and backward waves are coupled by
the discontinuities in the structure and are most strongly coupled at a
frequency close to that at which the spaces between the vanes are resonant.
v The result, as in coupled-cavity TWT structures, is to produce a pattern of
10.6 CROSSED-FIELD TUBES ‘r pass and stop bands as shown in Fig. 10.27. Because the slow-wave structure
is closed upon itself the possible frequencies of oscillation are limited to
those for which there is a whole number of wavelengths around the peri-
meter of the device. The possible resonances in the lowest mode are shown
'~ in Fig. 10.27 for an eight-vane anode like that in Fig. 10.26. The flat top of
~ the dispersion curve means that most of the resonances are grouped within
a very narrow frequency band.

Of all the possible resonances only that for which the phase shift per

Re(k) Im(k)

:*I_:g I]0.24 Dispf;]rsion diagram for a coupled-cavity travelling-wave tube in v
e slow space-charge wave interacts with the first space ha i e
the slow-wave structure. 4 ronic of the A

three octaves. At 10 GHz mean powers of a few hundred watts and p y
pulsed, powers of a few kilowatts can be obtained. Coupled-cavity
operate Over narrower bands (around 15%) because of the greater d
persion of coupled-cavity slow-wave structures. However they have n )
better heat dissipation capabilities than helices so that a mean pow
10kW and a peak power of several hundred kilowatts, or more, at 10

are readily achieved. Further information about travelling- :
be found in Gilmour (1986). g-wave tubes ¢

Thei: linear-beam tubes (klystrons and TWTs) described so far all rely
their operation on a linear electron beam which is confined by some arra g
ment of axial magnetic field. This is not the only way to get electro
flow in a smooth controlled manner. A possible alternative is to use cro
electric and magnetic fields as shown in Fig. 10.25(a) with the electric fiel

V=20
B® —

(a) V=-Y%

—— Anode (V= 0)

— Electron cloud

/"= Cathode (V = — ;)
(b)

Fig. 10.25 C 2 e . . . e
gc?)mctry_ rossed-field electron flow: (a) linear geometry, and (b) cylind ca

Fig. 10.26 Cross section of a magnetron anode.

||_55J
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\/ Slow-wave
Y // structure
N
N 7
X
AN
7 X \
| N r.f. out
- field amplifier
Lt)10 - k N Fig. 10.28 Arrangement of the slow-wave structure of a cross-field amplifier.
n/p 2n/p 4

fc:fonlfnﬂr;lzgiﬁzn S e S showing the electrons move gradually clpser_ to the anf.)de as they in_teract ‘with the
‘wave on the structure. Their kinetic energy is thus replenished from the
d.c. electric field as fast as it is converted to r.f. power. Th‘e electr_ons
therefore remain in synchronism with the wave throughout the interaction.
agnetrons with conversion efficiencies of over 80% havg been _rnade for
plications such as industrial heating where efficiency is a prime con-

eration. For further information on crossed-field devices see Gilmour

cavity is 180° has a field pattern which is locked to the orientation of
anode vanes. This ‘T mode’ is therefore the one chosen for the interacti
When the magnetron is turned on the electrons may interact with othe
modes besides the ® mode particularly the next nearest modes on ei
side. The interaction starts from the thermal noise in the device and
different modes compete until eventually one becomes dominant. An i
portant part of magnetron design is ensuring that the correct mode
always excited to the exclusion of others. This is achieved by careful des
of the anode to get the greatest possible separation between the 7 me
and the unwanted modes and by tailoring the shape of the voltage p
applied between cathode and anode to assist anode the growth of the
mode. f

In common with other oscillators the magnetron can be locked to :
particular phase and frequency by the injection of a signal within the ano
resonance Q curve at a level about 10dB below the output power of
device. A next stage in this train of thought is to make a break in the slo
Wwave structure, so that it is no longer resonant, and to couple the ends
external waveguides as shown in Fig. 10.28. This device can act as
amplifier employing either a forward-wave or backward-wave interacti
depending upon the type of slow-wave structure employed. It does nof
show the kind of linear, small-signal, amplification found in linear beam
tubes and is probably best thought of as a special kind of locked oscillator
with a wider range of operating frequencies than the magnetron. The gain
is usually only 10 to 20dB in contrast to the 40 to 60 dB commonly achieved
by linear-beam tubes.

Crossed-field devices possess a number of advantages over lincar-beam
tubes. First, they are much lighter and more compact for a given pow
output and frequency. Second they can operate at lower impedances (lo
voltage, high current) and, third, they are intrinsically more efficient co
verters of d.c. input to r.f. output power. The last property arises becausé

10.7 FAST-WAVE DEVICES

the devices described so far in this chapter depend for their operation
upon slow-wave structures or resonant cavities. These features Sf:ale linearly
‘with wavelength and become increasingly difficult and expensive to m‘ak_e
the required frequency and power increase. The upper frequen(.;y limit
r conventional slow-wave devices is around 100 GHz. Alternative ap-
oaches which do not require the use of delicate microwave structures
ve been the subject of much research in recent years b?c‘ausc of their
tential for generating large amounts of power at sub-millimetre wave-
lengths. ik

~ In a coupled-cavity TWT it is possible to work at beam ‘vcloutles well
below the speed of light by making use of the space ha_rmomcs_ of the wave
on the slow-wave structure. This suggests that useful 1nt}3raf:t10n gould be
obtained by using an electron beam which varies penodlca!ly in some
fashion so that the interaction is between a fast electromagnetic wave in a
waveguide and a space harmonic of the electron beam modes. o
Figure 10.29 shows one possible way of achlevmg.th]s res.ult.' A thin high-
elocity electron beam confined by an axial magnetic field is directed down
the centre of a rectangular waveguide. The beam is deflected a]tcrna_tely to
the right and left of the mid-plane by the periodic transverse magnetic ﬁel_d
fa ‘wiggler’. Each time the direction of transverse motion of an electron 1s
Teversed it experiences an acceleration and therefore emits clectromagne.tu,
‘radiation over a broad band of frequencies. If the ends of the waveguide
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TS S e dat e ‘Fig. 10.31 The arrangement of a hollow electron beam in a cylindrical waveguide

‘Fig. 10.32 Gyrotron interaction between the 'tangential component of the r.f. field
“and an electron moving in a small orbit within the electron beam.

Space harmonic

Wavequide

mode Fundamental

Beam modes
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Fig. 10.33 Dispersion diagram of a gyrotron oscillator.

Fig. 10.30 Dispersion diagram showing the interaction between a space-ha
of the waves on a periodic electron beam and a fast waveguide mode.

are closed so that it becomes resonant then the radiation from the
trons is stimulated by the standing wave in the resonator. The resemb _
between this situation and that in a laser has led to the description of ¢
device as a ‘free electron laser’ (FEL). An alternative view is that |
interaction is represented by the dispersion diagram shown in Fig.
which shows the synchronism between the fast electromagnetic wave
waveguide and a space harmonic of the slow cyclotron mode on the ele
beam. FELs have, so far, only been constructed as experimental d
making use of the intense, high-energy, beams generated by electron
erators. In one experiment pulsed powers of up to 1 GW were obtaine
35GHz. In another it has been demonstrated that electromagnetic pow!
at optical wavelengths can be produced. -
An alternative arrangement, shown in Fig. 10.31, has a hollow relati L
electron beam directed along a circular waveguide. The electrons intera
with the field of the TE,, (circular electric) mode of the waveguide at t
cyclotron frequency. They are arranged at the radius where the field streng
of that mode is a maximum. Within the beam individual electrons descril
orbits as shown in Fig. 10.32. The radius of an orbit is given by g

r=vjw, (10.85

where v, is the tangential velocity of the electron and the relativistic cyclotron
frequency is given by

. | . 10.86

P =Y =V (10.86)

An electron at the point A is accelerated by the‘ﬁeld $0 its cyclotr(_)n
frequency increases. Conversely an electron at B is retarded so thzft its
 cylotron frequency decreases. The effect of this is thaF tpe ele.ctrons are
bunched by the field and can give up energy to it. This is an interaction
between the fast cyclotron mode on the beam and t'he fast f.:lectromagnetl_c
wave in the waveguide as shown in Fig. 10.33, Devices which work on this

I

b



| 260 || VACUUM DEVICES

- " ELECTRON ACCELERATORS ][ 261 |

principle are known as cyclotron resonance masers (CRMSs) or gyrotrons
Gyrotrons have been constructed which provide 100kW of pulsed powe
at 200 GHz. At lower frequencies pulsed powers in excess of a mega
and mean powers of 75kW has been achieved. Further information g
fast-wave devices can be found in Granatstein and Alexeff (1987). -

kinetic energy becomes very large. Thus, after the first few cells, the _effect
of the accelerating field is to increase the energy qf the electrons without
appreciably increasing their velocities. The energies of th_e electrons are
usually expressed in terms of electron volts (the energy gained by an elec-
¢ron in moving through a potential difference of one volt). The electron
energies produced by linear accelerators vary from a fe“i MeV for accel-
erators used for radiotherapy to the 20 GeV of the two-mile accelerator at
§tanford in California.

. When very high-energy electrons are required from a more compact
source a synchrotron may be used. This machine has the gene{al arrange-
ment shown in Fig. 10.35. Electron bunches are formed by a linear aCf:el—
erator and injected into a beam tube which forms a closed loop. Straight
sections of the tube are separated by bending magnets whose strength can
be adjusted to keep the bunches moving along the centre of the b(_eam tube
' as their energy increases. One or more microwave cavities very like .those
used in klystrons are inserted into the beam tube. The syncll_rotrfJn is de-
signed in such a way that the bunches experience an f’icc?aleratmg field each
time they cross a cavity. Because the electron velocity is very close to th.e
speed of light the time taken for a bunch to go once around _the ring is
virtually constant. A synchrotron may be used as a source of h1gh-energ3y
electrons (typically a few GeV) or as a source of intense electromagnetic
radiation. This radiation is produced by the radial acceleration of the elec-
trons in the bending magnets or by putting a wiggler magnet in one of the
straight sections. Synchrotrons and linear accelerators have both been used

10.8 ELECTRON ACCELERATORS

The devices described in the earlier parts of this chapter are all concerne
with the conversion of the energy of moving electrons into radiofrequencg
power. It is, however, possible to reverse the processes in order to produg
beams of high-energy electrons or other charged particles. ,

The linear accelerator works rather like a coupled-cavity travelling-way
tube. The difference is that the phase change per cavity is chosen to a
erate the bunches of electrons instead of extracting energy from them.
general arrangement of a travelling-wave linear accelerator is shown
Fig. 10.34. Electrons from an electron gun are injected into the first ca
of a chain of coupled cavities. The cavities are generally coupled togethe
by the axial hole through which the electrons pass. Radiofrequency pows
is fed in to the cavity chain from a high-power source such as a magnet
to provide a very strong axial r.f. electric field in the cavity. Around half ¢
the injected electrons are captured by the field and formed into bunche
which are then accelerated by the fields of subsequent cavities. The cavi
are made progressively longer through the first few cells to maintain sys
chronism with the accelerating bunches. Because of the very high ac
erating fields used the velocity of the electrons very quickly approaches th
velocity of light. The kinetic energy of the electrons is then given by

E = mgcz[m— 1],

where my is the rest mass of the electron and c is the velocity of light

i i i Bendin
(Rosser, 1964). As the electron velocity approaches the velocity of light th magnetg
[ ‘ ’ | ‘ ‘ l ‘ [ ‘ ‘ T Beam tube
High-
[ FooZoooootoIiTIIIIIID eneny
| L] =

Electron

gun | | | . i it
Slow- Injector Accelerating cavity
wave linear
structure accelerator

rf.in r.f. out High-power klystron

Fig. 10.34 Schematic diagram of a microwave linear accelerator. - Fig. 10.35 Schematic diagram of a synchrotron storage ring.
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to provide the high-energy electrons required for experiments with fre

klystron amplifier whose electron beam has the parameters given in
electron lasers.

Question 10.1 part 1. The cavities have unloaded Q factors of 500 and
R/Q of 800 Q and the gap transit angles (k.d) are w/2.

10.5 The electron beam defined in Question 10.1 part 1 is used in a helix
travelling-wave tube with a centre frequency of 10 GHz. Calculate thfe
pitch angle of the helix and the gain of a section of tube 30 mm long if
the interaction impedance of the helix is 500 Q.

10.9 CONCLUSION

In this chapter we have considered some of the interactions which t;
place between free electrons and electromagnetic waves. These intera
are fundamental to the operation of high-power microwave sources
particle accelerators. Closely related phenomena occur in ionized ¢
including the plasmas used in experiments on nuclear fusion. :

Streams of electrons carry space-charge and cyclotron waves and the
can interact with external r.f. fields to produce amplification. The beati
between the fast and slow space-charge waves is used in the klystron. T
interaction between the slow space-charge wave and the wave on a
wave structure is fundamental to the operation of the travelling-wave tu
and the magnetron oscillator.

Newer devices such as the gyratron and the free-electron laser e:
interactions between electrons and fast electromagnetic waves in wa:
guides. These devices hold the promise of generation of very large am
of power at wavelengths ranging from millimetres down to optical
lengths.

The interaction between charged particles and radiofrequency elect
fields is employed in linear accelerators, synchrotrons and other parti
accelerators to produce particle energies ranging from MeV to GeV.

EXERCISES

10.1 Calculate the velocity, current density and plasma frequency for ele
tron beams having the following parameters:

1. V=5kV, I =20mA, diameter = 1 mm,
2. V=10kV, I = 0.5 A, diameter = Smm,
3. V=060kV, I=12A, diameter = 8mm.

(Note: at high voltages the beam velocity must be calculated using tl
relativistically correct equation (10.87) in place of (10.23).)

10.2 Calculate the plasma wavelength and the electronic wavelength an
characteristic impedance at 3 GHz, 10 GHz and 60 GHz for ea
the beams defined in Question 10.1.

10.3 Calculate the d.c. power and the fast- and slow-wave powers at 10 GE
for each of the beams in Question 10.1 if the beam kinetic voltage
10% of the d.c. voltage in each case.

10.4 Calculate the gain at 10GHz and the bandwidth of a two-cavil



