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Preface

Electromagnetic theory is fundamental to the whole of electrical and elec-
tronic engineering. As such it should surely be an essential part of the
professional knowledge of all who call themselves electronic engineers.
Yet it is a common complaint among teachers of the subject that students
cannot be persuaded to take it seriously perhaps because of their obsession
with digital electronics. It seems to me that this is very regrettable. Ad-
vances in high-speed digital electronics and in opto-electronics will present
problems which cannot be solved without an understanding of electro-
magnetic theory. The EEC directive on electromagnetic compatibility to
be adopted in 1992 will likewise demand a knowledge of fundamental
principles. For these reasons it is vital that all students of electrical and
electronic engineering should gain a basic knowledge of electromagnetics.

My own experience of grappling with problems in the engineering appli-
cations of electromagnetic theory has convinced me that the subject is
usually presented in an over-mathematical way. This may be an additional
reason why students find it unattractive. In this book I have introduced the
subject in a physical and intuitive way making use of elementary math-
ematics for the most part. The emphasis is on the physical understanding
which is the basis for solving problems. Those who eventually need to
understand the full mathematical treatment will find that this book provides
a good starting point. More often these days computer packages are used
to solve electromagnetic field problems with complex boundary conditions.

Engineers generally prefer to work with circuit theory than with field
theory. This is typified by the use of ‘j notation’ to extend the methods of
analysis of d.c. circuits to a.c. problems. Microwave engineers normally
work with transmission line equivalent circuits whenever possible. A major
concern in this book is with the ways in which these equivalent circuits are
developed.

The content of the book may be divided into three parts. In Chapters 1
104 the emphasis is on basic properties of electromagnetic waves. Chapters 5
10 10 deal systematically with the applications of the theory to a wide range
Of components and devices. Many of the applications are in microwave
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engineering but optical and e.m.c. topics are included wherever appropriate.
Finally, Chapters 11 and 12 discuss microwave and e.m.c. measuring tech-
niques and provide an overview of the applications of electromagnetic
waves in a variety of systems. The aim throughout has been to provide the
reader with the basic knowledge which will make the professional literature
of the subject accessible. An extensive list of references is provided for this
purpose. A small number of exercises are grouped at the end of each
chapter (except Chapter 9 where they seemed inappropriate). These are
mostly very straightforward. Their purpose is to help the reader to under-
stand the main points in the text, to give confidence in handling the ideas
and to give a feel for the numbers involved.,

This book carries on the development of the subject from the point
I reached in Electromagnetism for Electronic Engineers (1986). Those who
have found that book helpful will find that the approach in this one is
familiar. I hope that it will be found useful not only by students but also by
those who discover later in their careers a need for a knowledge of electro-
magnetic theory.

I'am indebted to a number of people who have influenced my own under-
standing of electromagnetism. My father taught me the value of ‘thinking
from first principles’. As an undergraduate I relied heavily on Bleaney and
Bleaney (1976) which is a model of elegant simplicity in its treatment of the
subject. I hope I may have achieved for engineers what that book did for
students of physics. My present head of department, Colin Hannaford, was
the first to draw my attention to the value of equivalent circuit methods.
Finally, Schelkunoff (1943) introduced me to the idea of using transmission-
line methods for electromagnetic wave problems.

In the writing of this book I have been heavily indebted to a number of
people. Dr L.G. Ripley of the University of Sussex kindly commented
on the manuscript and made many helpful suggestions. Dominic Recaldin
and his staff at the publishers were patient beyond belief with an author
who had a chronic inability to meet deadlines. Most of all I must thank
my wife and family who had to put up with my frequent and lengthy dis-
appearances into my study.

R.G. Carter
1989

Electromagnetic waves

1.1 INTRODUCTION

This book is about electromagnetic waves, the spectrum of radiation which
ranges from the longest radio waves through the infrared and optical regior}s
and on to hard X-rays and gamma rays. Figure 1.1 shows the electromagnetic
spectrum and some of its uses. Engineers make use of every part of Fh@s
vast range of frequencies in information systems of all kinds. Although it is
sometimes possible to work with the systems without knowledge of the
underlying physical principles there are occasions when this ignorance is a
handicap. The whole subject is based on just four physical laws and the
consequences of their application to problems with different boundary
conditions. Many of these problems can be studied without the use of
advanced mathematical methods. Indeed the use of those methods can
hinder the growth of the physical understanding which really solves prob-
lems. The aim of this book is three-fold: to help the reader to gain a
physical understanding of problems involving electromagnetic waves, to
relate that understanding particularly to modern problems, and to provide
a route into the professional literature of the subject.

Engineers first became aware of electromagnetic waves in the middle of
the nineteenth century with the development of the electric telegraph. This
Was understood, however, in terms of circuit theory rather than electro-
magnetic field theory. At that time optics was regarded as a separate branch
of physics. The work of James Clerk Maxwell, published in his Treatise on
Electricity and Magnetism in 1873, provided for the first time a field theory
of electromagnetic waves and evidence that light is also an electromagnetic
pPhenomenon. The subsequent exploitation of that theory in radio, radar,
television, satellite communications and coherent optics has produced a
transformation of human life which is still going on. Maxwell’s equations
are therefore the starting point of any discussion of these subjects and also
of the unwanted electromagnetic coupling which is of increasing concern to
electronic engineers.




|| ELECTROMAGNETIC WAVES

Wavelength  frequency
~ Radiotherapy
110 "*m[ 10%*Hz
y-rays Imaging
L 10%"Hz
- 1nm Photolithography
X-rays
L 18
- 1pm 10°"He
Ultraviolet P —
| ptoelectronics
L um [ 10"°Hz Visible light ;r
Infrared
F 10'2Hz
i Millrsotre: wave H%j:;-lmunications
Microwave [
IE I 1GHz UHF TV
VHF
b Short wave
L km [ 1MHZ 5 Medium wave Radio
3 Long wave I
B X Navigation
L o5 [ 1kHZ : 9
L 1Hz ;

Fig. 1.1 Chart of the electromagnetic spectrum showing some of the uses to which
electromagnetic waves are put.

1.2 MAXWELL’S EQUATIONS

The equations which are now known as Maxwell’s equations are actually a
summary of the four basic laws of electromagnetism (Carter, 1986 p. 12).
These are listed below.

1. Gauss’ theorem of electrostatics states that the flux of the electric flux
density D, sometimes known as the electric displacement, out of a closed
surface is equal to the total free charge enclosed.

foaa [ oo

where g is the charge density and dA and dv are elements of the area of
the surface and of its volume.

2. Gauss’ theorem of magnetostatics states that the flux of the magnetic
flux density B out of a closed surface is zero (because magnetic mono-

poles do not exist).
ﬁB-dA = 0.

(1.1)

(1.2)

r

| MAXWELL’S EQUATIONS

3. The magnetic circuit law as modified by Maxwell to include the dis-
placement current (sometimes known as Ampére’s law) states that the
line integral of the magnetic field vector H around a closed path is equal
to the total current flux (conduction plus displacement current) through
a surface bounded by that path.

%H'd!= J‘J (J—f-%?)'dA,

where J is the conduction current density.

4. Faraday’s law of electromagnetic induction states that the line integral
of the electric field vector E around a closed path is equal to the rate of
change of the magnetic flux through a surface bounded by that path

fra--{|2u

These are the integral forms of the equations. If the notation is found
intimidating it is helpful to remember that it is just a way of writing the
usual statements of the laws of electromagnetism in the shorthand notation
of mathematics. The laws may also be written in equivalent, differential,
forms:

(1.3)

(1.4)

1. Gauss’ theorem of electrostatics

V-D = p; (1.5)
2. Gauss’ theorem of magnetostatics
VB =0 (1.6)
3. The magnetic circuit law
V/\H=J+%;and (1.7)
4. Faraday’s law of electromagnetic induction
oB
NE=——. (]
VAE 7= (1.8)

The notation of vector calculus used above may, again, be rather intimidating
to those who are not mathematically minded. The important thing to re-
member is that these expressions can be given meanings in a variety of
Systems of coordinates. Appendix B summarizes these interpretations in
Cartesian, and cylindrical and spherical polar coordinates, those being the
Ones most commonly used by engineers. For the greater part of this book
only rectangular Cartesian coordinates are required.

Maxwell’s equations are believed to be expressions of basic physical

L3
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laws. In order to make use of them we also require another set of equations
which summarize experimental information about the properties of ma-
terials (Carter, 1986 p. 130).

1. Ohm’s law
J = oE, (1.9)

where o is the conductivity of the material. In this book o is used rather
than its reciprocal, the resistivity o, to avoid confusion with the use of
that symbol for charge density.

2. Dielectric materials

D = ¢E, (1.10)
where € is the permittivity of the material which can also be written as
£ = Epk;, (1.11)

where & is the primary electric constant and € is the relative permit-
tivity of the material.
3. Magnetic materials

B = uH, (1.12)
where p is the permeability of the material which can also be written as

W= ol (1.13)

where y, is the primary magnetic constant and U, is the relative per-
meability of the material. For some materials either or both of g and p,
may be complex indicating a phase difference between D and E or B and
H for alternating fields.

It is important to bear in mind that these equations are useful approxi-
mations of experimental results. They assume that the material properties
are constants. While this is a satisfactory assumption for many conducting
and dielectric materials it is only a crude approximation for ferromagnetic
and ferroelectric materials. In some cases the material properties cannot be
regarded as scalar quantities. The vectors which are related to each other
by an equation are then not parallel to each other. These aspects of the
subject are beyond the scope of this book. Here we shall be assuming that
all the properties of materials can be described by scalar constants. (See
Dekker, 1959, for further information)

The final equation which will be needed summarizes the law of con-
servation of charge:

The net current flow out of a closed surface is equal to the rate of
decrease of the enclosed charge.

E__—wvés IN NON-CONDUCTING MEDIA [ 5

In mathematics this is expressed by the continuity equation which can be
written in both integral and differential forms

jggj-dA=—§tﬂ’J‘gdv (1.14)

0
Vod =S (1.15)
at
The remainder of this chapter explores the possibility of plane wave sol-
utions to Maxwell’s equations in a variety of media.

1.3 ELECTROMAGNETIC WAVES IN NON-CONDUCTING MEDIA

The field theory of a lossless two-wire transmission line assumes that the
electric and magnetic fields are perpendicular to each other and to the
direction of the line (Carter, 1986, Ch. 7). The results of this theory are
consistent with experiment and with the parallel approach using circuit
theory summarized in Appendix A. A wave of this kind is called a transverse
electric and magnetic (TEM) wave. It is natural to enquire whether this
result can be generalized to other situations.

The exploration starts from equations (1.7) and (1.8). By restricting
attention to non-conducting materials (1.7) can be simplified to give

oD
VAH= v (1.16)

To simplify matters still further we assume that, working in rectangular
Cartesian coordinates, E only has a component in the x direction and H
only in the y direction. If we also assume that any wave propagates in the z
direction it follows that the two field vectors vary only with z and .

In rectangular Cartesian coordinates, the curl of H can be written in the
form of a determinant (see Appendix B)

£ ¥y b4
VAH=|0/dx 8/dy 0/dz|, (1.17)
Hx Hr_v H.

Where £, § and £ are unit vectors in the x, y and z directions, respectively.
Evaluation of the determinant with the assumed direction of H yields

VAH=—%£0H,/oz (1.18)

since 9H,/0x and dH,/dy are both zero. Notice that this vector is in the x
direction. Equation (1.16) therefore becomes

OH, O,

0z 5o

(1.19)
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This is a scalar equation because the vectors on either side are both in the x
direction.
In the same way equation (1.8) leads to
OFE, 0H,

oz "o (1.20)

These equations are remarkably similar in form to the telegrapher’s equa-
tions derived from the circuit theory of transmission lines (Carter, 1986,
p. 108)

ol _ .oV

ke (1.21)
14 al

—=-L—. ‘
ox at (L2

The resemblance is even more striking when the dimensions of the quan-
tities are recalled: H in amps per metre, E in volts per metre, ¢ in farads per
metre and p in henries per metre.

Differentiating (1.19) with respect to ¢ and (1.20) with respect to z gives

&*H 9°E,
i o PRl 23
azat . © 0P )
O°E °H
Z=_p—2, 1

022 W ozor (1.24)
9’E, 9’E,

whence ryc bl el (1.25)

This is the standard form of the wave equation. For sinusoidal waves the
solution can be written (Carter, 1986, p. 110)

E, = E, exp j(wt — kz) + E_ exp j(ot + kz), (1.26)

where E, and E_ are the amplitudes of waves travelling in the positive
and negative z directions, respectively. It should be remembered that
the use of complex notation is a convenient way of simplifying the math-
ematical manipulations and that here, as in the ‘j notation’ used in circuit
theory, it is the real part of every expression which is taken to have physical
significance.

The phase velocity of the waves is given by

w 1

Tk T Yiew

(c.f. the relationship v, = 1/)/(LC) for a transmission line).
For the special case of waves travelling in free space, the numerical

(1.27)

[___ WAVES IN NON-CONDUCTING MEDIA

yalue of the phase velocity calculated from experimental values of ¢, and
agrees with the experimental measurements of the velocity of light
within the limits of experimental error. It is easy to show that H, also
satisfies an equation like (1.25).
The relationship between E, and H, can be found by substituting the
general solution (1.26) and the equivalent expression for H, into equation
(1.19). Then for waves travelling in the positive direction

jkH, = joeE, (1.28)

e y(E)-an

This quantity has the dimensions of impedance and it is referred to as the
wave impedance. In free space it has the numerical value 377 Q. One
important deduction can be made from (1.29) namely that E, and H, are in
phase with each other. It can be shown that the wave impedance of the
wave in a transmission line also satisfies (1.29). (Carter, 1986). For waves
travelling in the —z direction k is negative and a minus sign appears in
(1.28). The relationship between E, and H, in a plane electromagnetic
wave is usually represented by the diagram shown in Fig. 1.2. This diagram
shows the field vectors varying sinusoidally in space with the whole pattern
moving in the z direction at the phase velocity of the wave. This diagram is
a little misleading because it does not give the impression that E,and H,
are constant over any plane perpendicular to the z axis. At this point it may
be asked how it is possible for the field lines to lie exactly in a plane and,

or

Fig. 1.2 Relationship between the electric and magnetic field vectors in a plane
°lecn'0magnetic wave,

L7 ]
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consequently, never end. The answer to this is that, in practice, a plane
wave is created by launching a spherical wave. At a large distance from the
source any small part of the wave front is effectively a plane wave.

1.4 ENERGY FLOW IN AN ELECTROMAGNETIC WAVE

When a wave V exp j(wr — kz) propagates on a transmission line of charac-
teristic impedance Z, the instantaneous flow of power along the line given

P=VYl= ViZ; = Z51°, (1.30)

It is plausible to suppose that, in the same way, an electromagnetic wave
propagating in free space also carries power. Now in a region where the
electric and magnetic field strengths are E and H the stored energy density is

W = Le|E|? + du|H[. (1.31)

By making use of the relationship (1.29) between E and H we find that the
peak energy density in an electromagnetic wave is

W = V(e |E||H|. (1.32)

The peak power flow is obtained by multiplying this expression by the
velocity of the wave from (1.27) to give

S = |E||H|. (1.33)

Strictly speaking the group velocity should be used here in place of the
phase velocity (see p. 40) but for waves propagating in uniform dielectric
media they are identical.

Because the power flow is a vector which is perpendicular to both E and
H it is useful to write (1.33) in vector form

S=EAH. (1.34)

The vector § is known as Poynting’s vector. Since E, H and S are in the x,y
and z directions respectively equation (1.34) gives the correct direction
for §.

When Sisintegrated over a closed surface the principle of the conservation
of energy requires that the total power flow should be equal to the rate of
change of energy stored. This statement is known as Poynting’s theorem.
The proof of the theorem involves advanced mathematical techniques so it
1s not given here; it can be found in standard texts (e.g. Ramo et al., 1965).
It should be noted that the proof only gives a physical significance to the
flux of § out of a closed surface and not to § itself. Where energy is
dissipated as heat within the surface that must also be taken into account in
applying the principle of conservation of energy. Poynting’s theorem can
be regarded as a generalization of the ideas of the flow of energy in electric

- ~ WAVES IN CONDUCTING MATERIALS ||

circuits which associates the flow with the fields rather than directly with
the currents and voltages.

The Poynting vector is not the only possible expression of the power ﬂc_»w
in an electromagnetic wave. An alternative, the Slepian vector, is dI.S-
cussed by Carter (1967). The two approaches correspond to rather dif-
ferent physical pictures of the way in which energy is transmitted and
dissipated. In practice the Poynting vector is the one generall_y used.

Very often the electromagnetic power flow is that in a sinusm(‘lal electro-
magnetic wave. In that case the time average Poynting vector is

(8) =1E A H* (1.35)

where E and H are the complex wave vectors, the asterisk indicates the
complex conjugate, and the factor of 5 is a consequence olf averaging the
power flow over a full cycle of the wave. This expression is i.:los.e]y ‘anai-
ogous to the usual expression for the power flow in an electric circuit

P =3vI* (1.36)

demonstrating again that the equations of circuit theory are special cases
of the general laws of electromagnetism which apply when the currents
are constrained to flow in wires and the components of the circuit can be
regarded as lumped.

1.5 ELECTROMAGNETIC WAVES IN CONDUCTING MATERIALS

If the wave propagates in a conducting material then it is necessary to
include the conduction current density J in the equations. If we again
assume that the electric and magnetic fields are in the x and y directions
respectively and that they vary as exp j(wt — kz) then (1.7) becomes

jkH, = (0 + jwe)E,. (1.37)

A good conductor may be defined as a material in which the conduction
current is much greater than the displacement current, that is ¢ > jwe in
(1.37) so that, approximately

jkH, = OE,. (1.38)

For copper 0 = 5.7 x 10’Sm ™' and £ = 107" Fm ™" s0 that the approxi-
mation is valid up to frequencies around 10'°Hz. Similarly, from (1.8)
Wwe get

JKE, = jouH, (1.39)
SO that
kK = —joon
k = =] V(wop). (1.40)
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The square root of —j can be found by noting that

—j = exp(—jn/2)

so that
V=i = exp(—jmn/4)
= cos(—m/4) + j sin(—m/4)
1 . _

=) (1.42)
and

SR

=2(1—-j)/8, (1.43)

where O = yY(2/wop). (1.44)

Substituting for k in the expressions for the fields shows that £ and H
vary (for waves travelling in the +z direction) as

exp j(wt — z/9) exp(—z/d).

Thus a wave propagates with an exponentially decreasing amplitude. The
decay constant § is known as the skin depth for reasons which will become
apparent in Chapter 4. The skin depth varies with frequency and with the
properties of the material. For copper we find

at 1kHz O =2mm
at | MHz 5267!_1,111
at 1 GHz 6=2|,|,m_

The wave impedance is given by
Z, = E/H, = jklo
=(1+j)/od (1.45)

so that the electric and magnetic fields are not in phase with each other but
the electric field leads the magnetic field by 45°.

The power flow in the wave is given by the real part of the complex
Poynting vector

S| = Re|LE A H*|

Re[%'E'Z(l ij”

= Re[3|E[0d(1 — j)]
= 1|E|?08.

Il

(1.46)

WAVES IN CONDUCTING MATERIALS

In some materials, mainly lossy dielectrics, the conduction ‘and displace-
ment currents are of comparable magnitudes so that the solqt:on for k must
pe derived from (1.37) and (1.39). An added complication is that, because

of the effects of vibration and rotation of molecules, D and E are not
necessarily in phase with each other. This is allowed for by writing
e=¢ — je"
so that (1.37) becomes
jkH, = [(0 + we") + jwe'|E,
= (0’ + jowe')E,. (1.47)

The relationship between the conduction and displacement currents.is
illustrated in Fig. 1.3. The angle between the total current and the dis-

placement current is given by

tan & = o'/we’. (1.48)

This quantity is known as the loss tangent of the material. Note carefully
that & here is not the skin depth referred to above. Equation (1.47) can
therefore be written

jkH, = (1 — j tan 0)jwe'E, (1.49)
so that
j k* = (1 — j tan d)w’e'n

k=y(1 —jtan d)wy(e'n) (1.50)
for many materials the loss tangent is small so that

k = (1 — 4j tan d)w)/(e'n). (1.51)

Total current

jwe'E
Displacement
current

o'E
Conduction
current
Fig. 1.3 Phasor diagram of the conduction and displacement currents in a lossy
ielectric material.
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‘Il = Qﬂvl’ (1.56)

+ can be shown that the magnetic forces on the electrons are much smaller
than the electric forces so that, effectively,

Substituting this expression into the solution assumed for the propagation
of the waves we find

eXp jolt — V(e'w)z] exp ~[4w - Y(e'n) tan 8]z (1.52)

so that the waves decay as they propagate through the material. Typical
materials include plastics, ceramics and many organic materials. This part
of the theory finds application in the use of electromagnetic energy in
microwave ovens. For example, steak has &' = 40g, and tan § = 0.3 at
3GHz. Substituting these figures into the expression above shows that the
fields fall off by a factor 1/e in 17 mm.

mi = gE,
jomv, = gE,. (1.57)

;-':-_-;;,. inating v; between (1.56) and (1.57) gives
h=-i®gp (1.58)
®

1.6 PROPAGATION OF WAVES IN PLASMAS 1 ”' ent and the magnetic field from (1.53) are substituted into (1.7) we get

2

. _ W
So far it has been assumed that the conduction charges in a conductor are JkH, = jwsa(l ot a‘g—)Em (1.59)
able to respond instantly to the field of an electromagnetic wave. This

assumption is not always valid. A particular case is that of an ionized gasin wﬁ = MN0o/gg. (1.60)

which there are two species of mobile charge carriers, free electrons and
the very much more massive positive ions. It is convenient to speak of such
a gas as a plasma although some would restrict the use of that term to
situations where the ions are completely stripped of their electrons. The
theory of the interaction between electromagnetic waves and plasmas is
important for understanding the propagation of waves in the ionosphere,
in electron devices and in experiments in thermonuclear fusion. Some of
these cases are rather difficult because they involve the random thermal
motions of the charge carriers and collisions between them. Here the basic
ideas are illustrated by considering a cold, collisionless plasma.

We assume, as before, that the wave is a pure TEM wave propagating in
the z direction so that

This frequency is known as the plasma frequency. o
A second relationship between the two field vectors is given by (1.39)
d they may then be eliminated to give the propagation constant of the

2\
k== w]/(eop.g)(l - gg) . (1.61)

or this it is clear that the propagation constant has real values only when
gnal frequency is greater than the plasma frequency. The plaFma th.en
ves as a dielectric medium whose permittivity, from comparison with

E; = Ej exp j(wt — kz) v Eo( - m_g) (L62)
L H, = Hy exp j(wt — kz). (1.53)
€quencies below the plasma frequency k is pure imaginary so that the
$ decay as

To make things simpler we will also assume that the ions can be regarded
as fixed so that only the electron motion has to be considered. The current ]
density, charge density and electron velocity at a point in the plasma are o3 : Ek L6
related by FAR|- e 0Z |, '

ko is the free-space propagation constant at frequency . Further
is shed on this behaviour by consideration of the wave impedance
14 of the relationship between the conduction and displacement current
“Bsities. The wave impedance is, from (1.59) and (1.61),

7= )(e- ) ton

J = ow. (1.54)

The plasma as a whole is supposed to be electrically neutral so only the
time-varying part of this equation matters, that is

Ji = govi + oyvy. (1.55)

Provided that the signal levels are small 01 < @¢ and the second term is
negligible compared with the first so that
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Above the plasma frequency this is real so that E and H are in phase with
each other. Below the plasma frequency it is pure imaginary so that E and
H are in phase quadrature and there is no net flow of power. The displace-
ment current is

_ D
ot

so that, from (1.58), the conduction current is

Jd = jwgykE,,

|
|
|
(1.65) :’

Ex

Fig. 1.4 Combination of waves polarized in the x and y directions.

(1.66)

Thus below the plasma frequency the electrons can follow the wave, the
conduction current dominates and the plasma behaves as a conductor.
Above the plasma frequency they cannot do so, the diplacement current
dominates and the plasma behaves as a dielectric,

Similar behaviour is seen in some dielectric materials which contain
molecules having an electric dipole moment. The permittivities of these
materials vary with frequency according to whether the molecules can
rotate to follow the changing electric field or not. For further information

E, cos wt

wt

I s |

consult the book by Bleaney and Bleaney (1976).

1.7 POLARIZATION OF WAVES

So far we have only discussed waves which have their electric and magnetic

field vectors in the x and y directions, respectively. It is obvious that this is
not the only possible orientation of the field vectors for a wave propagating
in the positive z direction. The orientation of the electric field vector is
referred to by electronic engineers as the plane of polarization of the wave.
Somewhat confusingly the convention adopted in optics is to define the
plane of polarization as the direction of the magnetic field vector. In this
book the first convention will be used throughout,

Any general direction of polarization can be considered as a superposition
of two waves having the same phase as each other and polarized in the
x and y directions as shown in Fig. 1.4. Such a wave is known as a plane-
polarized wave. We shall see later that waves having different polarizations
behave differently when they pass through certain media and when they
are reflected from the interface between two dielectric materials. These
properties have important practical consequences.

Now consider the slightly more complicated case where the two com-
ponents of a wave are equal in amplitude but have phases which differ from
each other by 90°. At a particular plane perpendicular to the z axis the
electric field of the wave is

E = iE; cos wt + yE, sin wt (1.67)

that the tip of the electric field vector is rotating ar()l:md a cir'cle with
ngular velocity o as shown in Fig. 1.5. The wave is then said to be c1r(.:ularly
olarized. Moreover, because the direction of rotation of the electric field
or with time is in the right hand corkscrew sense with respect to the
s, it is positive circularly polarized. Evidently, if the phase dlfferepce
een the x and y components had been made —90° the sense of rotation
d have been reversed and the resulting wave would have been negative
larly polarized.

0 the most general case of all the amplitudes of the two components
differ from each other and their phases be other than in quadraturg.
' ip of the electric field vector then traces out an ellipse; aqd the wave is
to be elliptically polarized. As this increase in generality mtr‘oduces no
principles it will not be pursued further here and the reader is referred
more advanced texts for the details (e.g. Jordan and Balmain, 1968;

urst, 1973)

8 PROPAGATION IN GYROMAGNETIC MEDIA

€ media have the property that when they are placed. in 4 steady
Bnetic field the propagation constants for positive and negative ci rcularly
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polarized waves differ from each other. Examples are ionized gasses and
ferrites. They are known collectively as gyromagnetic materials for reasons
which will become apparent. Ferrites are made by sintering mixtures of
oxides of iron and of metals such as nickel or magnanese (Baden-Fuller,
1987). They combine ferromagnetic properties with high electrical resistivity
and have been developed because of their usefulness at high frequencies.
The mathematical treatment of wave propagation in ferrites is rather in-
volved so the case of propagation in an ionized gas in a magnetic field will
be used here to illustrate how the gyromagnetic properties arise. Wave
propagation in ferrites is discussed in Chapter 8.

Consider, then, an ionized gas which is in a steady magnetic field B,
directed parallel to the z axis. Let a positive circular polarized wave pass
through in the z direction. The electric field of the wave is then

E = [£ — j¥]E, exp j(ot — kz). (1.68)

To simplify the derivation we assume that each electron moves in a circular
orbit perpendicular to the z axis with an angular velocity w. The ions are
assumed to be sufficiently massive so that their motion can be ignored. The
electrons experience the rotating radial electric field of the wave shown in
Fig. 1.5 and the condition for a steady orbit is that the radial forces should
balance. That is

—qEy — groBy + mro? = 0, (1.69)

where g is the magnitude of the charge on an electron. The three terms
represent the electric force, the magnetic force produced by the motion of
the electron through the magnetic field, and the centrifugal force. Equation
(1.69) can be rearranged to give the radius of the stable orbit

nEy

=—120 1.70
g w(w — o) (1.70)

where 7 is the charge to mass ratio of the electron and
w. = N8B, (1.71)

is the cyclotron frequency, that is, the angular velocity of the electron for a
stable orbit when the electric field is zero. Equation (1.70) shows that the
radius of the orbit is greatest when the signal frequency is equal to the
cyclotron frequency. It would not become infinite in practice because of
the effects of collisions. When o > w, ris positive so the electron moves in’
phase with the applied field. When o < w, r is negative, implying that the
motion and the field are in antiphase.

Figure 1.6 shows the Cartesian components of the velocity of the electron.
If there are N electrons per unit volume then the x component of the
current density is

ELECTROMAGNETIC WAVES ]
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Fig. 1.6 Cartesian components of the velocity of an electron moving in a circular
orbit.

J. = —Ngx
= —jNgwr exp j(wr — kz). (1.72)
Then, from (1.7), we get
JkH, = I, + jogE, (1.73)
or
kH, = E[l——w% ] (1.74)
E S (L)((D — ) ' '

. Combining this with (1.39) gives the propagation constant of the wave
(c.f. eqn (1.61))

1

o ]2 (1.75)
K= wV(ﬁouo)[l R 6 :
Where the subscript + indicates positive circular polarization. Equation
(1.75) shows that at very high frequencies the propagation constant tends
10 that of free space. This is because the electrons are unable to follow the
changes in the field. . _
The equivalent expression for the negative circularly polarized wave is
obtained by setting equal to —w, giving

)=

k. = m]/(eouo)[l - ﬁ] : (1.76)

Thus the positively and negatively polarized waves have different propa-
gation constants. The physical explanation for this effect is revealed when

k| €Quation (1.69) is examined. For positive rotation the magnetic force is

NWards whilst for negative rotation it is outwards. Thus for positive rotation
the electric force required to produce equilibrium can be either inwards or
OUtwards, whereas for negative rotation it must always be inwards.
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This effect has important practical consequences. A plane polarized
wave can be considered as the superposition of a pair of circularly polarized

waves by writing

RE, = 3(& + j§)E, + 1(£ - §)E,, (1.77)

where the two brackets on the right hand side of the equation represent a

pair of positive and negative circularly polarized waves.

In most media the propagation constants of the two waves are the same
and at any other plane they can be recombined to give a plane polarized
wave with the same plane of polarization as before. In a gyromagnetic
medium, however, the propagation constants of the waves differ, as we
have seen, so that the phase relationship between them changes as they
propagate. When they are recombined the effect is to produce a plane
polarized wave whose plane of polarization has been rotated about the
z axis relative to the initial polarization. This effect is known as Faraday
rotation.

In the ionosphere the Earth’s atmosphere is ionized by cosmic rays to
produce a plasma which is influenced by the Earth’s magnetic field. Thus
the ionosophere is a gyromagnetic medium of the kind discussed above.
Radio signals transmitted from satellites experience a rotation in their
planes of polarization as they pass through the ionosphere and the extent
of the rotation varies with time because of variations in the density of
free electrons. If plane waves were used for the transmissions there would
be difficulties in receiving them because of this effect. The solution is to
transmit circularly polarized waves so that the Faraday rotation appears
only as a phase shift in the signal received.

Faraday rotation also occurs when a wave passes through a ferrite ma-
terial which is in a steady magnetic field. This is put to use in the micro-
wave devices known as circulators and isolators which are discussed further
in Chapter 8.

1.9 BOUNDARY CONDITIONS

The study of waves in uniform, infinite media is of limited interest. Practical
problems usually involve more than one medium so that the behaviour
of the waves at the interfaces is very important. The starting point for dis-
cussing this subject is the statement of the boundary conditions which
apply to the electric and magnetic fields at a boundary at which there are
no surface charges or currents.

1. The tangential component of the electric field E is continuous.

2. The normal component of the electric flux density D is continuous.
3. The tangential conponent of the magnetic field H is continuous.

4. The normal component of the magnetic flux density B is continuous.

BOUNDARY CONDITIONS ||

X
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Fig. 1.7 Incident, reflected and transmitted wave fields for an electromagnetic
ve incident normally on a dielectric boundary.

proofs of these conditions can be found in books on elementary electro-
agnetism (Carter, 1986, pp. 24 and 66). _

The simplest case of interaction between an L‘elecyromagnetlc wave and a
ndary arises when the direction of propagation is normal to it. T‘hte field
ors are then parallel to the boundary and only ?)ounda.ry FOﬂdlthﬂS 1
d 3 are needed. Figure 1.7 shows this situation with the lr!c1dent, tran§-
ed and reflected wave fields. The origin of coordinates is t:flken to lie
| _ the boundary for convenience. The propagation constants in the two

materials are

ki = wy(e1m) and k2 = w)(g212) (1.78)
ind the wave impedances are
Zy = \/(ﬂ) and Z, = \/(&) (1.79)
£ €
he three waves are then
E; exp j(wt — k2)
E, exp j(wt + kyz)
E, exp j(wt — kyz). (1.80)

'dary condition 1 requires that the electric fields should be the same
i both sides of the boundary.

E, +E, = E, (1.81)

ilarly condition 3 yields
. H, - H, = H.. (1.82)

€ Equations are analogous to those for the voltage and cqrrent at a dis-
tinuity in a transmission line (Appendix A). The magnetic field vectors

 the incident and reflected waves must be of opposite sign in order to
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give the correct directions for the power flow. By making use of the wave
impedances (1.82) can be rewritten

(Ei - Er)]ZI = Et/‘2'27 (1.83)

whence the reflected wave is given by

ET Zz - Z]

=21 i

E, Z,+ Z (.84
and the transmitted wave is given by

E 27,

E Z+ 2, (1.85)

8 ‘Geometry of the reflection and refraction of waves at a dielectric boundary

We have seen in the preceding sections that the wave impedance is some- e incidence.

times a complex or imaginary quantity, When this occurs the ratios of the
wave amplitudes are complex indicating reflection and transmission with a
change of phase. An important special case arises when the second material
is regarded as a perfect conductor, The electric field within it and the wave

impedance must then be zero so that "

e eral a wave will not be incident normally on a boundary. For other
incidence we have to consider separately waves polarized normal
undary and waves polarized parallel to the boundary. Any more
e can be regarded as a superposition of thesg two. o

e shall establish the laws of reflection and refraction by con51de:r1ng
The diagram shows general incident, reflected and traIlSIjﬂlttEd
king angles 6;, 0, and 6, to the normal to the bgundary. Points A
e chosen on the boundary so that the phase difference between
° for the incident wave. Whatever conditions apply at A must
y at B so that the phase differences for the other two waves must
60°. Wavefronts AC, BD and BE are constructed for each wave
cular to the directions of propagation. The distances CB, AD and
hen the distances travelled by the wavefronts in one cycle of the

that is

—=-1 and % =0 (1.86a)

that is, the wave is totally reflected at the boundary with the reflected wave !
in antiphase with the incident wave. The corresponding equations for the
magnetic fields are

L3
H,

From these it follows that the magnetic field is 2H; just outside the conductor
and zero within it. There is, therefore, an apparent violation of boundary
condition 3. The explanation is that currents flow in the surface of the
conductor to match the fields on either side (see Carter, 1986, p. 66). The
surface current density is equal to the tangential component of the magnetic
field.

Equations (1.84) and (1 -85) bear a striking resemblance to the equations
for the transmission and reflection coefficients at a junction between two
transmission lines of different impedances (see Carter, 1986, p. 112). This
is not surprising when we remember that the waves on the lines can be
described either in circuit terms or as TEM field waves. We have already
seen that there is a close resemblance between the differential equations
governing the two descriptions (eqns (1.19) to (1.21)). The analogy is very
important practically because it allows us to make use of transmission line

H
_1—}_ =1 and = 0. (1.86b)

CB = AD = )
AE = A, (1.87)

and ), are the wavelengths in the two media. The triangles ABC
D are similar triangles and the angles of incidence and .reﬂectlon
d to be equal to each other. We can therefore use subscripts 1 and

to the angles in the two media.
transmitted wave, from triangles ABC and ABE we have

- L = ~?\2_ (1.88)
sin B;  sin 6,

techniques for solving electromagnetic wave problems. This point will be A o= — 2 and A= = 2 (1.89)
explored further in Chapters 3 and 4. - )/ (g1147) w)/(&2u2)
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sin 6 €

— - \/(2—”2) (1.90)

sin 0, £l i
This is evidently related to Snell’s law of geometrical optics (Longhurst,

1973). 0, |_6,

sin 9, n,
A 1.91)
sin@, n’ (1.91)

where n; and n, are the refractive indexes of the two materials. The re-
fractive index is the ratio of the velocity of light in free space to that in the
medium. For non-ferromagnetic materials K = Ho to a close approximation
so that n = ye,. '

Having established these basic relations we can proceed to consider
the oblique incidence of a wave on a boundary taking first the case shown
in Fig. 1.9 where the plane of polarization is normal to the boundary.
Applying boundary conditions 1 and 3 as before yields

92 Et

Hi

1.10 Field vectors for oblique incidence of waves on a dielectric boundary with
c field parallel to the boundary.

(H; — H) cos 0, = H, cos 0, (1.96)

can be made equivalent to (1.81) and (1.83) by defining the normal
es of the waves by

& o fmy -1 1.97)
Zny " Hcos0 \/(e) cos B’ (

-al cases involving the interactions between waves and boundaries
n different materials will be considered in later chapters.
!

(Ei + Er) Cos 8] = Et Ccos 92 (192
H - H, = H, (1.93)

Comparison with equations (1.81) and (1.82) shows that we can maintain
the correspondence with transmission line theory if we define the normal
wave impedance of the waves as

_Ecos8 3 E) : :
Ly = 7= \/(e cos 0. (1.94)

When the electric field vectors are parallel to the boundary as shown in
Fig. 1.10 the boundary conditions are

b
JONCLUSION

ter we have considered the propagation of plane electrc.)magm.:tlc
ough different media and seen how it depends upon tlhelr physical
The different cases considered are not exhaustive but have
osen to illustrate the principal kinds of phenomena whj(_:h occur.
e also established the laws of reflection and refraction which apply
S at the interface between two materials. A close resemblance to
sion line theory has been demonstrated which promiges to allow
n line methods to be applied to problems involving electro-
‘Waves. The fundamental concepts considered in this chapter are
10 practical situations in the chapters which follow.

Ei + Er = Et (195 J

0, | s,
€1l E

Ealt E
02

Hy

te the wave impedances of electromagnetic waves travellin_g in
ace, polystyrene (g, = 2.7), alumina (g, = 8.9) and Barium
itium titanate (g, = 10000).

Fig. 1.9 Field vectors for oblique incidence of waves on a d

ielectric boundary with
the electric field normal to the boundary.
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1.2 Calculate the power density in an electromagnetic wave whose electric
field strength is 100 Vm ™' in the same materials as question 1.1.

1.3 Calculate the skin depth at 50Hz, 5MHz and 5 GHz for silver (o =
6.1 x 107S), Graphite (o = 10°S) and seawater (0 =459).

1.4 Calculate the attenuation in decibels per metre for electromagnetic
waves at a frequency of 10GHz travelling through glass (g, = 4,
e"/e' = 21 X 107*) and through fused quartz (&'/ey = 3.78, ¢"/c’ =
1079, 2

L.5 Calculate the plasma frequency for electrons and for hydrogen molec-
ular ions (mass = 3672 X mass of electron) when the particle densities
are 10”m= and 10"°m 3,

1.6 Calculate the wave impedances of the electron plasmas in question 1.5
at a frequency of 1 GHz.

1.7 Calculate the electron cyclotron frequency at magnetic field strengths
of 0.05, 0.1 and 0.2T.

1.8 Calculate the propagation constants at a frequency of S00MHz for
positive and negative circularly polarized waves in an electron plasma
whose electron density is 10'°m™ in the presence of a magnetic field
of 0.01T.




