
MATH337: Changepoint Detection

Gaetano Romano

2024-11-01

Table of contents

Preface 4
Source files, and attributions . 5

1 An Introduction to Changepoint Detection 6
1.1 Introduction to Time Series . 6

1.1.1 What is a time series? . 6
1.1.2 Properties of time series . 8

1.2 Introduction to changepoints . 10
1.2.1 Types of Changes in Time Series . 14
1.2.2 The biggest data challenge in changepoint detection 16

1.3 Detecting one change in mean . 17
1.3.1 The CUSUM statistics . 18
1.3.2 Searching for all 𝜏s . 18
1.3.3 Example . 19
1.3.4 Algorithmic Formulation of the CUSUM Statistic 20
1.3.5 Example: a large sequence . 21

1.4 Exercises . 23
1.4.1 Code the CUSUM algorithm for a unknown change location, based on

the pseudocode above. 23
1.4.2 Lab 1 . 23

2 Controlling the CUSUM and Other Models 25
2.1 The asymptotic distribution of the CUSUM statistics 25

2.1.1 Controlling the max of our cusums . 26
2.2 The Likelihood Ratio Test . 28

2.2.1 Example: Gaussian change-in-mean . 29
2.3 Towards More General Models . 31

2.3.1 Change-in-variance . 31
2.3.2 Change-in-slope . 33
2.3.3 Revisiting our Simpsons data (again!) 35

2.4 Exercises . 36
2.4.1 Workshop 2 . 36
2.4.2 Lab 2 . 36

2

3 Multiple changepoints 38
3.1 Introduction . 38

3.1.1 Real Example: Genomic Data and Neuroblastoma 38
3.1.2 Towards multiple changes . 39
3.1.3 The cost of a segmentation . 41
3.1.4 The “best” segmentation . 42

3.2 Binary Segmentation . 45
3.2.1 Binary Segmentation in action . 46

3.3 Optimal Partitioning . 51
3.3.1 Optimal partitinioning in action . 52
3.3.2 Neuroblastoma example . 55

3.4 Exercises . 56
3.4.1 Workshop 3 . 56
3.4.2 Lab 3 . 57

4 PELT, WBS and Penalty choices 59
4.1 Drawbacks of OP and BS . 59

4.1.1 Quality of the Segmentation . 59
4.1.2 Computational Complexity . 61

4.2 PELT and WBS . 62
4.2.1 PELT: an efficient solution to OP . 62
4.2.2 WBS: Improving on Binary Segmentation 64

4.3 Penalty Selection . 65
4.3.1 Example in R: Comparing Penalties with PELT 66
4.3.2 CROPS: running with multiple penalties 68

4.4 Exercises . 71
4.4.1 Workshop 4 . 71
4.4.2 Lab 4 . 73

5 Working with Real Data 76
5.1 Assessing the model fit . 76

5.1.1 Assessing Residuals from a Changepoint Model: A Guide for Under-
graduate Mathematics . 76

5.1.2 Example: violating heteroschedasticity: 80
5.2 Estimating Other Known Parameters . 83

5.2.1 Neuroblastoma Example: The Impact of Mis-specified Variance 84
5.2.2 Addressing Mis-specified Variance with Robust Estimators 85

5.3 Non-Parametric Models . 86
5.4 Exercises . 89

5.4.1 Workshop exercises . 89

References 91

3

Preface

These are the notes for MATH337 Changepoint Detection. They were written by Gaetano
Romano.

The module will introduce you to changepoint detection, detailing some algorithms, developing
the basics theoretical foundations, and practicing few real-world scenarios.

Across five weeks we will cover the following topics:

1. An introduction to changepoint detection and the CUSUM statistics

2. Controlling the CUSUM and some additional models

3. Dealing with multiple changes

4. PELT, WBS and Penalty selection

5. Working with Real World data.

We will be using R as the programming language for this module. If you’re unfamiliar with it,
make sure you cover the first three weeks of MATH245.

Every week, you are expected to follow two lectures, one workshop, and one computer aided
lab. Over the lecture, we will cover the basics concepts of changepoint detection.

At the end of each chapter, you will find exercises that will be carried in the workshop and
the lab. During the workshop, you will be dealing with computations and details about the
methodologies, and, finally, during the lab sessions, you’ll give a go at programming the various
algorithms and running real-world examples.

You will find the solutions to the exercises on the Moodle page, released weekly.
If you cannot access the Moodle page, and you still would like to have these solutions, please
get in touch with me.

4

https://www.lancaster.ac.uk/~romano/
https://www.lancaster.ac.uk/~romano/
https://lumath245.github.io/_book/index.html

Source files, and attributions

The notes are released as open-source on GitHub under the CC BY-NC 4.0 License. You can
access the repository at the following link: https://github.com/gtromano/MATH337_change
point_detection.

The materials in this course are based on and share elements with the following resources:

• Fearnhead, P., & Fryzlewicz, P. (2022). Detecting a single change-point. arXiv preprint
arXiv:2210.07066.

• Rebecca Killick’s Introduction to Changepoint Detection - a half-day introductory course
on changepoint detection.

• Rebecca Killick’s Further Changepoint Topics - an extended course on changepoint de-
tection.

• Toby Hocking’s Course on Unsupervised Learning, which includes changepoint detection.

I would like to express my gratitude to the authors of these resources. In addition, materials
were sourced from various academic papers, which are referenced throughout the body of these
notes.

5

https://github.com/gtromano/MATH337_changepoint_detection?tab=License-1-ov-file
https://github.com/gtromano/MATH337_changepoint_detection
https://github.com/gtromano/MATH337_changepoint_detection
https://github.com/rkillick/intro-changepoint-course
https://github.com/rkillick/further-changepoints-course
https://github.com/tdhock/2023-08-unsupervised-learning

1 An Introduction to Changepoint Detection

1.1 Introduction to Time Series

In this module, we will be dealing with time series. A time series is a sequence of observations
recorded over time (or space), where the order of the data points is crucial.

1.1.1 What is a time series?

In previous modules, such as Likelihood Inference, we typically dealt with data that was not
ordered in a particular way. For example, we might have worked with a sample of independent
Gaussian observations, where each observation is drawn randomly from the same distribution.
This sample might look like the following:

𝑦𝑖 ∼ 𝒩(0, 1), 𝑖 = 1, … , 100

Here, 𝑦𝑖 represents the 𝑖-th observation, and the assumption is that all observations are inde-
pendent and identically distributed (i.i.d.) with a mean of 0 and variance of 1.

6

0

5

10

15

20

−3 −2 −1 0 1 2
Values

F
re

qu
en

cy
Histogram of Random Normal Values

In this case, the observations do not have any particular order, and our primary interest may
be in estimating parameters such as the mean, variance, or mode of the distribution. This is
typical for traditional inference, where the order of observations is not of concern.

However, a time series involves a specific order to the data—usually indexed by time, al-
though it could also be by space or another sequential dimension. For example, we could
assume that the Gaussian sample above is a sequential process, ordered by the time we drew
an observation. Each observation corresponds to a specific time point 𝑡.

7

−2

−1

0

1

2

0 25 50 75 100
Time

V
al

ue
Time Series

0 5 10 15 20
count

Distribution

Formal Notation. In time series analysis, use an index 𝑡 to represent time or order on a
given set of observations. The time series vector is written as:

𝑦1∶𝑛 = (𝑦1, 𝑦2, … , 𝑦𝑛).

Here, 𝑛 is the total length of the sequence, and 𝑦𝑡 represents the observed value at time 𝑡, for
𝑡 = 1, 2, … , 𝑛. In our previous example, for instance, 𝑛 = 100.

Often, we are also interested in subsets of a time series, especially when investigating specific
“windows” or “chunks” of the data. A subset of a time series, starting from time 𝑙 to time 𝑢,
with 𝑠 ≤ 𝑢, will be denoted by the following:

𝑦𝑙∶𝑢 = (𝑦𝑙, 𝑦𝑙+1, … , 𝑦𝑢),

Where if 𝑙 = 𝑢, 𝑦𝑙∶𝑙 = (𝑦𝑙).

1.1.2 Properties of time series

Time series can have various statistical properties that explain how they behave over time,
and they can be characterized based on those. Let us look at three examples of time series:

8

A: stationary w.r.t the mean B: Linearly increasing trendC: Piecewise stationary in the mean

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

2.5

5.0

7.5

0

4

8

12

−2

−1

0

1

2

Time

V
al

ue
Comparison of Time Series

A. The leftmost time series, was generated by sampling random normal variables 𝑦𝑡 =
𝜖𝑡, 𝜖𝑡 ∼ 𝒩(0, 1). In this case:

𝔼(𝑦𝑡) = 𝔼(𝜖𝑡) = 0, Var(𝑦𝑡) = Var(𝜖𝑡) = 1, ∀ 𝑡 ∈ {1, ..., 100}.

Say we generate more observations under the same random process, this will give us
still a value that will be centered on 0, with variance 1, e.g. 𝔼(𝑦150) = 0, Var(𝑦150) = 1.

B. In the centre time series, the series is generated as:

𝑦𝑡 = 𝜖𝑡 + 0.1 ⋅ 𝑡, 𝜖𝑡 ∼ 𝒩(0, 1).

This creates a time series with a linear upward trend. Similarly to what done before:

𝔼(𝑦𝑡) = 𝔼(𝜖𝑡) + 𝔼(0.1 ⋅ 𝑡) = 0.1 ⋅ 𝑡.

Again, saying that we wish to predict the behaviour of the time series at time 150, we
know this will be centered on 𝔼(𝑦150) = 1.5 (and with which variance?).

C. In the rightmost example, the time series was generated for the first half of the observa-
tions as in A., however after 𝑡 = 50, a sudden shift occurs. Mathematically:

𝑦𝑡 = {𝜖𝑡 for 𝑡 ≤ 50
𝜖𝑡 + 5 for 𝑡 > 50 , 𝜖𝑡 ∼ 𝒩(0, 1)

9

This abrupt change at 𝑡 = 50 introduces a piecewise structure to the data, where the
data is seen following a distribution prior to the change, 𝑦𝑡 ∼ 𝑁(0, 1) up to a certain
time point 𝑡 = 50, and 𝑦𝑡 ∼ 𝑁(5, 1) after. In many examples of this module, we will
be studying processes that are piecewise stationary in the mean and variance, as in this
example.

Stationarity in the mean and variance. A time series is said to be stationary in mean
and variance, if its mean and variance are constant over time. That is, for a time series 𝑦1∶𝑛:

𝔼(𝑦𝑡) = 𝜇 and Var(𝑦𝑡) = 𝜎2 ∀ ∈ {1, ..., 𝑛}

Similarly, a time series is non-stationary in the mean and variance if those change over time.

Piecewise stationary in the mean and variance. A piecewise stationary time series is
a special case of a non-stationary time series. We will say that a time series is piecewise
stationary in mean and variance if it is stationary within certain segments but has changes in
the mean or variance at certain points, known as changepoints. After each changepoint, the
series may have a different mean, variance, or both.

Back to our example.

• In A., we can see, very simply how, in this case

𝔼(𝑦𝑡) = 𝔼(𝜖𝑡) = 0, ∀𝑡 ∈ {1, ..., 100},

therefore our series is stationary in the mean and variance.

• In B, we notice that:

∀𝑡1, 𝑡2 ∈ {1, ..., 100}, 𝑡1 ≠ 𝑡2 → 𝔼(𝑦𝑡1
) ≠ 𝔼(𝑦𝑡2

).

We can therefore say that the series is non-stationary in the mean.

• In C, 𝐸[𝑦𝑡] = 𝐸[𝜖𝑡] = 0 for 𝑡 ≤ 50, and 𝐸[𝑦𝑡] = 𝐸[𝜖𝑡] + 𝐸[3] = 5 for 𝑡 > 50. The series is
therefore piecewise stationary in the mean.

1.2 Introduction to changepoints

Changepoints are sudden, and often unexpected, shifts in the behavior of a process. They are
also known as breakpoints, structural breaks, or regime switches. The detection of change-
points is crucial in understanding and responding to changes in various types of time series
data.

The primary objectives in detecting changepoints include:

10

• Has a change occurred?: Identifying if there is a shift in the data.
• If yes, where is the change?: Locating the precise point where the change happened.
• What is the difference between the pre and post-change data? This may reveal

the type of change, and it could indicate differences in parameter values before and after
the change.

• How certain are we of the changepoint location?: Assessing the confidence in the
detected changepoint.

• How many changes have occurred?: Identifying multiple changepoints and analyz-
ing each one for similar characteristics.

Changepoints can be found in a wide range of time series, not limited to physical, biological,
industrial, or financial processes, and which objectives to follow depends on the type of the
analysis we are carrying.

In changepoint detection, there are two main approaches: online and offline analysis. In
applications that require online analysis, the data is processed as it arrives, or in small
batches. The primary goal of online changepoint detection is to identify changes as quickly
as possible, making it crucial in contexts such as process control or intrusion detection, where
immediate action is necessary.

On the other hand, offline analysis processes all the data at once, typically after it has been
fully collected. The aim here is to provide an accurate detection of changepoints, rather than
a rapid one. This approach is common in fields like genome analysis or audiology, where the
focus is on understanding the structure of the data post-collection.

To give few examples:

1. Spectroscopy data. Changepoint detection is useful in spectroscopy data to segment
time series of electron emissions into regions of approximately constant intensity, ac-
counting for large-scale fluctuations in laser power and beam pointing.

Figure 1.1: Electron emission spectroscopy data, Frick, K., Munk, A., & Sieling, H. (2014).

2. ECG: Detecting changes or abnormalities in electrocardiogram (ECG) data can help in
diagnosing heart conditions.

11

Figure 1.2: Electrocardiograms (heart monitoring), Fotoohinasab et al, Asilomar conference
2020.

3. Cancer Diagnosis: Identifying breakpoints in DNA copy number data is important for
diagnosing some types of cancer, such as neuroblastoma. This is a typical example of an
offline analysis.

Figure 1.3: DNA copy number data, breakpoints associated with aggressive cancer, Hocking
et al, Bioinformatics 2014.

4. Engineering Monitoring: Detecting changes in CPU monitoring data in servers can
help in identifying potential issues or failures: this is often analysed in real-time on with
online methods, with the aim of detecting an issue as quickly as possible.

12

Figure 1.4: Temperature data from a CPU of an AWS server. Source Romano et al., (2023)

5. Gamma Ray-Burst detection. Efficient online changepoint detection algorithms can
detect gamma-ray bursts from gamma-ray counts on satellites in space. These bursts
events happen in just a fraction of a second, and are related to supernova implosions.

In this module, we will focus exclusively on offline changepoint detection, where we assume
that all the data is available for analysis from the start.

13

1.2.1 Types of Changes in Time Series

Depending on the model, we could seek for different types of changes in the structure of a
time series. Some of the most common types of changes include shifts in mean, variance, and
trends in regression. For example, the CPU example above exihibited, in addition to some
extreme observations, both changes in mean and variance.

• A change in mean occurs when the average level of an otherwise stationary time series
shifts from one point to another.

−1

0

1

2

3

0 100 200 300 400 500
Time

V
al

ue

Change in Mean

In the plot above, the red lines indicate the true mean values of the different segments.

• A change in variance refers to a shift in the variability of the time series data, even
when the mean remains constant.

14

−2

0

2

4

0 100 200 300 400 500
Time

V
al

ue
Change in Variance

1.2.1.1 3. Change in Regression (Slope)

A change in regression or slope occurs when the underlying relationship between time,
and/or other auxiliary variables, and the values of the time series changes.

−2

−1

0

1

2

0 100 200 300 400 500
Time

V
al

ue

Change in Regression (Slope)

15

1.2.2 The biggest data challenge in changepoint detection

One of the most widely debated and difficult data challenges in changepoint detection may
not be in the field of finance, genetics, or climate science—but rather in television history.
Specifically, the question that has plagued critics and fans alike for years is: At which episode
did “The Simpsons” start to decline?

It’s almost common knowledge that “The Simpsons,” the longest-running and most beloved
animated sitcom, experienced a significant drop in quality over time. But pinpointing exactly
when this drop occurred is the real challenge. Fortunately, there’s a branch of statistics that
was practically built to answer questions like these!

I have downloaded a dataset (Bown 2023) containing ratings for every episode of “The Simp-
sons” up to season 34. We will analyze this data to determine if and when a significant
shift occurred in the ratings, which might reflect the decline in quality that so many have
observed.

4

5

6

7

8

0 200 400 600
Episode Number

R
at

in
g

Season

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

TMDB Ratings of The Simpsons Episodes

In this plot, each episode of “The Simpsons” is represented by its TMBD rating, and episodes
are colored by season. By visually inspecting the graph, we may already start to see some
potential points where the ratings decline. However, the goal of our changepoint analysis is
to move beyond visual inspection and rigorously detect the exact moment where a significant
shift in the data occurs.

Jokes apart, this is a challenging time series! First of all, there’s not a clear single change, but
rather an increase, followed by a decline. After which, the sequence seems rather stationary.
For this reason, throughout the module, we will use this data as a running example to develop

16

our understanding of various methods, hopefully trying to obtain a definitive answer towards
the final chapters. But let’s proceed with order…

1.3 Detecting one change in mean

In this section, we will start by exploring the simplest case of a changepoint detection problem:
detecting a change in the mean of a time series. We assume that the data is generated
according to the following model:

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡, 𝑡 = 1, … , 𝑛,

where 𝜖𝑡 ∼ 𝒩(0, 𝜎2) represents Gaussian noise with mean 0 and known variance 𝜎2, and 𝜇𝑡 ∈ ℝ
is the signal at time 𝑡, with 𝔼(𝑦𝑡) = 𝜇𝑡. The vector of noise terms 𝜖1∶𝑛 is often referred to
as Gaussian noise, and hence, this model is known as the signal plus noise model, where the
signal is given by 𝜇1∶𝑛 and the noise by 𝜖1∶𝑛.

In the single change-in-mean problem, our goal is to determine whether the signal remains
constant throughout the entire sequence, or if there exists a point 𝜏 , where the mean shifts.
In other words, we are testing whether

𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 (no changepoint),

or if there exists a time 𝜏 such that

𝜇1 = 𝜇2 = ⋯ = 𝜇𝜏 ≠ 𝜇𝜏+1 = ⋯ = 𝜇𝑛 (changepoint at 𝜏).

Note. The point 𝜏 is our changepoint, e.g. the first point after which our mean changes,
however there’s a lot of inconsistencies on the literature: sometimes you will find that people
refer to 𝜏 +1 as the changepoint, and 𝜏 as the last pre-change point (as a matter of fact, please
let me know if you spot this inconsistency anywhere in these notes!).

To address this problem, one of the most widely used methods is the CUSUM (Cumulative
Sum) statistic. The basic idea behind the CUSUM statistic is to systematically compare the
mean of the data to the left and right of each possible changepoint 𝜏 . By doing so, we can
assess whether there is evidence of a significant change in the mean at a given point.

17

1.3.1 The CUSUM statistics

The CUSUM statistic compares, for a fixed 𝜏 ∈ {1, … , 𝑛 − 1} , the empirical mean (average)
of the data to the left (before 𝜏) with the empirical mean of the data to the right (after 𝜏):

𝐶𝜏 = √𝜏(𝑛 − 𝜏)
𝑛 ∣ ̄𝑦1∶𝜏 − ̄𝑦(𝜏+1)∶𝑛∣ ,

Our ̄𝑦1∶𝜏 and ̄𝑦(𝜏+1)∶𝑛 are just the empirical means of each segment, simply computed with:

̄𝑦𝑙∶𝑢 = 1
𝑢 − 𝑙 + 1

𝑢
∑
𝑡=𝑙

𝑦𝑡.

The term on the left of the difference, is there to re-scale it so that our statistics is the absolute
value of normal random variable that has variance 𝜎2. If there is no change at 𝜏 , this difference
is going to be distributed as a standard normal.

This approach is intuitive because if the mean 𝜇 is the same across the entire sequence, the
values of the averages on both sides of any point 𝜏 should be similar. However, if there
is a large-enough change in the mean, the means will differ significantly, highlighting the
changepoint.

More formally, we declare a change at 𝜏 if:

𝐶2
𝜏

𝜎2 > 𝑐,

where the 𝑐 ∈ ℝ+ is a suitable chosen threshold value (in fact it is often chosen as in hypothesis
testing).

1.3.2 Searching for all 𝜏s

In practice, however, we do not know the changepoint location in advance. Our goal is to
detect whether a changepoint exists and, if so, estimate its location. To achieve this, we need
to consider all possible changepoint locations and choose the one that maximizes our test
statistic.

The natural extension of the CUSUM to this situation is to use as a test statistic the maximum
of 𝐶𝜏 as we vary 𝜏 :

𝐶2
𝑚𝑎𝑥 = max

𝜏∈{1,…,𝑛−1}
𝐶2

𝜏 /𝜎2.

18

And detect a changepoint if 𝐶2
𝑚𝑎𝑥 > 𝑐 for some suitably chosen threshold 𝑐. The choice of 𝑐 will

determine the significance level of the test (we’ll discuss this in more detail later). Graphically,
the test will look as follows:

0 5 10 15

−
10

−
5

0
5

Cusum over 15 points

t

If we detect a changepoint (i.e., if 𝐶2
𝑚𝑎𝑥 > 𝑐), we can estimate its location by:

̂𝜏 = arg max
𝜏∈{1,…,𝑛−1}

𝐶2
𝜏 .

In other words, ̂𝜏 is the value of 𝜏 that maximizes the CUSUM statistic.

A simple estimate of the size of the change is then given by:

Δ ̂𝜇 = ̄𝑦(̂𝜏+1)∶𝑛 − ̄𝑦1∶ ̂𝜏 .

This estimate represents the difference between the mean of the data after the estimated
changepoint and the mean of the data before the estimated changepoint.

1.3.3 Example

Let us compute the cusum for the vector 𝑦1∶4 = (0.5, −0.1, 12.1, 12.4).
We know that 𝑛 = 4 (the total number of observations), therefore possible changepoints are:
𝜏 = 1, 2, 3.

Compute empirical means for each segment

We first need to calculate the segment means, ̄𝑦1∶𝜏 and ̄𝑦(𝜏+1)∶𝑛, for each 𝜏 .

19

• For 𝜏 = 1, the left segment is: 𝑦1∶1 = (0.5), and ̄𝑦1∶1 = 0.5. The right segment: 𝑦2∶4 =
(−0.1, 12.1, 12.4) gives ̄𝑦2∶4 = −0.1+12.1+12.4

3 = 24.4
3 = 8.13.

• For 𝜏 = 2, we have, in a similar fashion, ̄𝑦1∶2 = 0.5−0.1
2 = 0.2, ̄𝑦3∶4 = 12.1+12.4

2 = 12.25,

• Lastly, for 𝜏 = 3, we have ̄𝑦1∶3 = 0.5−0.1+12.1
3 = 12.5

3 = 4.16 and ̄𝑦4∶4 = 12.4.

Compute the CUSUM statistics

Now that we have the empirical means for each segment, we have all the ingredients for
computing our CUSUM:

𝐶𝜏 = √𝜏(𝑛 − 𝜏)
𝑛 ∣ ̄𝑦1∶𝜏 − ̄𝑦(𝜏+1)∶𝑛∣ .

• For 𝜏 = 1:

𝐶1 = √1(4 − 1)
4 ∣0.5 − 8.133∣ = 0.866 × 7.633 = 6.61.

• For 𝜏 = 2:

𝐶2 = √2(4 − 2)
4 |0.2 − 12.25| = 1 × 12.05 = 12.05.

• For 𝜏 = 3:

𝐶3 = √3(4 − 3)
4 ∣4.166 − 12.4∣ = 0.866 × 8.233 = 7.13.

Thus, the maximum of the CUSUM statistic occurs at 𝜏 = 2, with 𝐶𝑚𝑎𝑥 = 12.05. To detect a
changepoint, we would compare 𝐶𝑚𝑎𝑥 to a threshold value 𝑐. If 𝐶𝑚𝑎𝑥 > 𝑐, we conclude that
there is a changepoint at ̂𝜏 = 2.

1.3.4 Algorithmic Formulation of the CUSUM Statistic

This process seems rather long, as for every step, we need to precompute the means… A naive
implementation of the cusum, in fact, takes 𝒪(𝑛2) computations.

However, there’s an algorithmic trick: by sequentially computing partial sums, e.g. 𝑆𝑛 =
∑𝑛

𝑖=1 𝑦𝑖, we can shorten out our computations significantly. In this way we can compute the
value of the means directly as we iterate in the for cycle.

20

INPUT: Time series 𝑦 = (𝑦1, ..., 𝑦𝑛), threshold 𝑐, variance 𝜎2.
OUTPUT: Changepoint estimate ̂𝜏 , maximum CUSUM statistic 𝐶𝑚𝑎𝑥

𝑛 ← length of 𝑦
𝐶𝑚𝑎𝑥 ← 0
̂𝜏 ← 0

𝑆𝑛 ← ∑𝑛
𝑖=1 𝑦𝑖 // Compute total sum of y

𝑆 ← 0

FOR 𝑡 = 1, … , 𝑛 − 1
𝑆 ← 𝑆 + 𝑦𝑡

̄𝑦1∶𝑡 ← 𝑆/𝑡
̄𝑦(𝑡+1)∶𝑛 ← (𝑆𝑛 − 𝑆)/(𝑛 − 𝑡) // Can you figure out why?

𝐶2
𝑡 ← 𝑡(𝑛−𝑡)

𝑛 (̄𝑦1∶𝑡 − ̄𝑦(𝑡+1)∶𝑛)2

IF 𝐶2
𝑡 > 𝐶𝑚𝑎𝑥

𝐶𝑚𝑎𝑥 ← 𝐶2
𝑡

̂𝜏 ← 𝑡

IF 𝐶𝑚𝑎𝑥/𝜎2 > 𝑐
RETURN ̂𝜏 , 𝐶𝑚𝑎𝑥 // Changepoint detected

ELSE
RETURN NULL, 𝐶𝑚𝑎𝑥 // No changepoint detected

For this reason, the time complexity of the CUSUM algorithm is 𝑂(𝑛), where 𝑛 is the length
of the time series.

1.3.5 Example: a large sequence

We can see how the value 𝐶2
𝑡 in the algorithm above behaves across different values of 𝑡 =

1, … , 𝑛 − 1 in the example below:

21

0.0

2.5

5.0

7.5

0 25 50 75 100
x

y

0

200

400

600

0 25 50 75 100
x

C
U

S
U

M

Running the CUSUM test, and maximising on our Simpsons episode, results in:

4
5
6
7
8

0 200 400 600
Episode

R
at

in
g

The Simpsons Ratings Over Time

0

100

200

0 200 400 600
Episode

C
U

S
U

M
 S

ta
tis

tic

CUSUM Statistics over time

This results in episode Thirty Minutes over Tokyo being the last “good” Simpsons episode, with
Beyond Blunderdome being the start of the decline, according to the Gaussian change-in-mean
model!

22

1.4 Exercises

1.4.1 Code the CUSUM algorithm for a unknown change location, based on the
pseudocode above.

Workshop 1

1. Determine if the following processes are stationary, piecewise stationary, or non-
stationary:

a. 𝑦𝑡 = 𝑦𝑡−1 + 𝜖𝑡, 𝑡 = 2, … , 𝑛, 𝑦1 = 0, 𝜖𝑡 ∼ 𝑁(0, 1). This is a random walk model. Let’s
start by computing the expected value and variance of 𝑦𝑡 across all 𝑡. TIP: Start by
expanding 𝑦𝑡 in terms of the noise components…

b. 𝑦𝑡 = 𝑡𝜖𝑡 + 3𝟙(𝑡 > 50), 𝑡 = 1, … , 100, 𝜖𝑡 ∼ 𝑁(0, 1)
c. 𝑦𝑡 = 0.05 ⋅ 𝑡 + 𝜖𝑡, 𝑡 = 1, … , 100, 𝜖𝑡 ∼ 𝑁(0, 1)

2. In this exercise we will show that:

1
𝜎

√𝜏(𝑛 − 𝜏)
𝑛 (̄𝑦1∶𝜏 − ̄𝑦(𝜏+1)∶𝑛)

in case of no change, e.g. for 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑛 = 𝜇, follows a standard normal
distribution. Hint:

a. Compute the expected value and variance of the difference ̄𝑦1∶𝜏 − ̄𝑦(𝜏+1)∶𝑛

b. Conclude that if you standardise the sum, this follows a standard normal distribu-
tion.

1.4.2 Lab 1

1. Code the CUSUM algorithm for a unknown change location, based on the pseudocode
of Section Section 1.3.4.

2. Modify your function above to output the CUSUM statistics over all ranges of tau.

3. Recreate the “CUSUM Statistics over time” plot for the Simpsons data above.

a. You’ll be able to load the dataset via:

23

library(tidyverse)
simpsons_episodes <- read_csv("https://www.lancaster.ac.uk/~romano/teaching/2425MATH337/datasets/simpsons_episodes.csv")

simpsons_ratings <- simpsons_episodes |>
mutate(Episode = id + 1, Season = as.factor(season), Rating = tmdb_rating)

simpsons_ratings <- simpsons_ratings[-nrow(simpsons_ratings),]

run your CUSUM algorithm on the Rating variable!

b. To run it on the whole sequence, you’ll have to set the threshold 𝑐 = ∞.

c. Assume 𝜎2 = 1

24

2 Controlling the CUSUM and Other Models

In this chapter, we explore the properties of the CUSUM test for detecting a change in mean,
and this will allow us how to determine appropriate thresholds, and explore its properties
when a changepoint is present.

We will employ some concepts from asymptotic theory: in time series analysis, an asymptotic
distribution refers to the distribution that our test statistic approaches as the length of the
time series 𝑛 becomes very large.

2.1 The asymptotic distribution of the CUSUM statistics

If 𝑧1, ⋯ , 𝑧𝑘 are independent, standard Normal random variables, then:

𝑘
∑
𝑖=1

𝑧2
𝑖 ∼ 𝜒2

𝑘,

where 𝜒2
𝑘 is a chi-squared distribution with 𝑘 degrees of freedom. The chi-squared distribu-

tion is a continuous probability distribution that models the sum of squares of k independent
standard normal random variables: we have met the chi-squared distribution already in hy-
pothesis testing and constructing confidence intervals. The shape of the distribution depends
on its degrees of freedom. For 𝑘 = 1, it’s highly skewed, but as 𝑘 increases, it becomes more
symmetric and approaches a normal distribution.

Last week, we found out that, under the null hypothesis of no change:

1
𝜎2

√𝜏(𝑛 − 𝜏)
𝑛 (̄𝑦1∶𝜏 − ̄𝑦(𝜏+1)∶𝑛) ∼ 𝑁(0, 1).

Therefore, our test statistics for a fixed 𝜏 :

𝐶2
𝜏

𝜎 ∼ 𝜒2
1.

If we take the example of last week, and remove the changepoint, we can observe that the
cusum statistics stays constant, and relatively small:

25

−2

−1

0

1

2

0 25 50 75 100
x

y

0

1

2

0 25 50 75 100
x

C
U

S
U

M

However, as the change is unknown, our actual test statistic for detecting a change is
max𝜏 𝐶2

𝜏 /𝜎2.

For this reason, calculating the distribution of this maximum ends up being a bit more chal-
lenging…

1. So far, we only studied the behaviour of the statistics for one fixed 𝜏 , however, when
comparing the maximums, the values of 𝐶𝜏 are in fact not independent across different
𝜏s.

2. As we will learn later, the CUSUM is a special case of a LR test, as setting the size of
the actual change in mean to 0 effectively removes the changepoint parameter from the
model. For this reason, the usual regularity conditions for likelihood-ratio test statistics
don’t apply here.

2.1.1 Controlling the max of our cusums

Fortunately, for controlling our CUSUM test, we can use the fact that (𝐶1, ..., 𝐶𝑛−1)/𝜎 are the
absolute values of a Gaussian process with mean 0 and known covariance, and there are well
known statistical results that can help us in our problem. Yao and Davis (1986), in fact, show
that the maximum of a set of Gaussian random variables is known to converge to a Gumbel
distribution, described by the following equation:

lim
𝑛→∞

Pr{𝑎−1
𝑛 (max

𝜏
𝐶𝜏/𝜎 − 𝑏𝑛) ≤ 𝑢𝛼} = exp{−2𝜋−1/2 exp(−𝑢𝛼)}, (2.1)

26

where 𝑎𝑛 = (2 log log 𝑛)−1/2 and 𝑏𝑛 = 𝑎−1
𝑛 + 0.5𝑎𝑛 log log log 𝑛 are a scaling and a centering

constant.

The right side of this equation is the CDF of a Gumbell distribution. As we learned from
likelihood inference, to find the threshold 𝑐𝛼 for a given false probability rate, we first set the
right-hand side equal to 1 − 𝛼, and solve for 𝑢𝛼. This gives:

𝑢𝛼 = − log (− log(1 − 𝛼)
2𝜋−1/2) .

Then, we can find the critical value by looking into the left side of the equation:

̃𝑐 = (𝑎𝑛𝑢𝛼 + 𝑏𝑛),

To find the threshold, as max𝜏
𝐶2

𝜏
𝜎2 > 𝑐, we just have to square our value above, e.g. 𝑐𝛼 = ̃𝑐2.

This asymptotic result suggests that the threshold 𝑐𝛼 for 𝐶2
𝜏 /𝜎2 should increase with 𝑛 at

a rate of approximately 2 log log 𝑛. Given that this is a fairly slow rate of convergence, this
suggests that the threshold suggested by this asymptotic distribution can be conservative in
practice, potentially leading to detect less changepoints than what actually exist.

In practice, it’s often simplest and most effective to use Monte Carlo methods to approximate
the null distribution of the test statistic. This can be done via the following process:

1. Simulate many time series under the null hypothesis (no changepoint),

2. Calculate the test statistic 𝐶2
𝜏 /𝜎2 for each one of the replicates.

3. Set the threshold to be the (1 − 𝛼) percentile of the distribution of the test statistics
from simulated data.

This leads to have less conservative thresholds.

Theoretical vs Empirical Thresholds The figure below shows, for various levels of 𝛼 =
0.01, 0.05, 0.1, thresholds 𝑐𝛼 computed from the theoretical distribution of Equation 2.1 against
the Monte Carlo thresholds obtained from empirical simulations under the null.

27

We will see how to compute in practice the theoretical and empirical thresholds in the Lab!

2.2 The Likelihood Ratio Test

The CUSUM can be viewed as a special case of a more general framework based on the
Likelihood Ratio Test (LRT). This allow us to test for more general settings, beyond simply
detecting changes in the mean.

In general, the Likelihood Ratio Test is a method for comparing two nested models: one under
the null hypothesis, which assumes no changepoint, and one under the alternative hypothesis,
which assumes a changepoint exists at some unknown position 𝜏 .

Suppose we have a set of observations 𝑥1, 𝑥2, … , 𝑥𝑛. Under the null hypothesis 𝐻0, we assume
that all the data is generated by the same model without a changepoint. Under the alternative
hypothesis 𝐻1, there is a single changepoint at 𝜏 , such that the model for the data changes
after 𝜏 . The LRT statistic is given by:

𝐿𝑅𝜏 = −2 log { max𝜃 ∏𝑛
𝑡=1 𝑓(𝑦𝑡|𝜃)

max𝜃1,𝜃2
[(∏𝑛

𝑡=1 𝑓(𝑦𝑡|𝜃1))(∏𝑛
𝑡=1 𝑓(𝑦𝑡|𝜃2)]} (2.2)

28

The LRT compares the likelihood of the data under two models to determine which one is
more likely: the enumerator, is the likelihood under the null hypothesis of no changepoint,
while the denominator represents the likelihood of the data under the alternative hypothesis,
where we optimise for two different parameters before and after the changepoint at 𝜏 .

2.2.1 Example: Gaussian change-in-mean

As a first example, we show how the CUSUM statistics is nothing but a specific case of the GLR.
To see this, we start from our piecewise costant signal, plus noise, 𝑥𝑖 = 𝑓𝑖 + 𝜖𝑖, 𝑖 = 1, … , 𝑛.
Under this model our data, a linear combination of a Gaussian, is distributed as:

𝑦𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2), 𝑖 = 1, … , 𝑛

Our p.d.f. will be:

𝑓(𝑦𝑡|𝜃) = 1√
2𝜋𝜎2 exp{− 1

2𝜎2 (𝑦𝑡 − 𝜇)2}.

Therefore, to obtain the likelihood ratio test statistic, we plug our Gaussian p.d.f. into the LR
above, and take the logarithm:

𝐿𝑅𝜏 = − 2 [max
𝜇

(− 1
2𝜎2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇)2) − max
𝜇1,𝜇2

(− 1
2𝜎2 (

𝜏
∑
𝑖=1

(𝑦𝑖 − 𝜇1)2 +
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − 𝜇2)2))] +

(2.3)
+ 𝜏 log(2𝜋𝜎2) + (𝑛 − 𝜏) log(2𝜋𝜎2) − 𝑛 log(2𝜋𝜎2). (2.4)

This simplifies to:

= 1
𝜎2 [min

𝜇

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝜇1)2 − min
𝜇1,𝜇2

(
𝜏

∑
𝑖=1

(𝑦𝑖 − 𝜇1)2 +
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − 𝜇2)2)] .

To solve the minimization over 𝜇1 and 𝜇2, we plug-in values ̂𝜇 = ̄𝑦1∶𝑛 on the first term, and
̂𝜇1 = ̄𝑦1∶𝜏 , ̂𝜇2 = ̄𝑦(𝜏+1)∶𝑛 for the second term:

𝐿𝑅𝜏 = 1
𝜎2 [

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝑛)2 −
𝜏

∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝜏)2 −
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − ̄𝑦(𝜏+1)∶𝑛)2] .

29

This is the likelihood ratio test statistic for a change in mean in a Gaussian model, which is
essentially the CUSUM statistics squared, rescaled by the known variance:

𝐿𝑅𝜏 = 𝐶2
𝜏

𝜎2 .

It is possible to prove this directly with some tedious computations.

Proof. We start by writing down 𝜎2𝐿𝑅. This will be:

𝜎2𝐿𝑅𝜏 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝑛)2 −
𝜏

∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝜏)2 −
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − ̄𝑦𝜏+1∶𝑛)2.

Now we need to expand each term. Starting with the first:

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝑛)2 =
𝑛

∑
𝑖=1

𝑦2
𝑖 − 2 ̄𝑦1∶𝑛

𝑛
∑
𝑖=1

𝑦𝑖 + 𝑛 ̄𝑦2
1∶𝑛.

As ∑𝑛
𝑖=1 𝑦𝑖 = 𝑛 ̄𝑦1∶𝑛, we notice that we can simplify the last two terms. We are left with:

𝑛
∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝑛)2 =
𝑛

∑
𝑖=1

𝑦2
𝑖 − 𝑛 ̄𝑦2

1∶𝜏 .

We proceed similarly for the other two terms:

𝜏
∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝜏)2 =
𝜏

∑
𝑖=1

𝑦2
𝑖 − 𝜏 ̄𝑦2

1∶𝜏 ,
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − ̄𝑦𝜏+1∶𝑛)2 =
𝑛

∑
𝑖=𝜏+1

𝑦2
𝑖 − (𝑛 − 𝜏) ̄𝑦2

𝜏+1∶𝑛.

Putting all together, and getting rid of the partial sums, we are left with:

𝜎2𝐿𝑅𝜏 = −𝑛 ̄𝑦2
1∶𝑛 + 𝜏 ̄𝑦2

1∶𝜏 + (𝑛 − 𝜏) ̄𝑦2
𝜏+1∶𝑛.

Now, recall that ̄𝑦1∶𝑛 = 1
𝑛 [𝜏 ̄𝑦1∶𝜏 + (𝑛 − 𝜏) ̄𝑦𝜏+1∶𝑛], and:

̄𝑦2
1∶𝑛 = 1

𝑛2 [𝜏2 ̄𝑦2
1∶𝜏 + 2𝜏(𝑛 − 𝜏) ̄𝑦1∶𝜏 ̄𝑦𝜏+1∶𝑛 + (𝑛 − 𝜏)2 ̄𝑦2

𝜏+1∶𝑛] .

Plugging in this into our LR:

30

𝜎2𝐿𝑅𝜏 = −𝜏2

𝑛 ̄𝑦2
1∶𝜏 − 2𝜏(𝑛 − 𝜏)

𝑛 ̄𝑦1∶𝜏 ̄𝑦𝜏+1∶𝑛 − (𝑛 − 𝜏)2

𝑛 ̄𝑦2
𝜏+1∶𝑛 − 𝜏 ̄𝑦2

1∶𝜏 − (𝑛 − 𝜏) ̄𝑦2
𝜏+1∶𝑛 = (2.5)

= 𝜏(𝑛 − 𝜏)
𝑛 ̄𝑦2

1∶𝜏 − 2𝜏(𝑛 − 𝜏)
𝑛 ̄𝑦1∶𝜏 ̄𝑦𝜏+1∶𝑛 + 𝜏(𝑛 − 𝜏)

𝑛 ̄𝑦2
𝜏+1∶𝑛 = (2.6)

= 𝜏(𝑛 − 𝜏)
𝑛 (̄𝑦2

1∶𝜏 − 2 ̄𝑦1∶𝜏 ̄𝑦𝜏+1∶𝑛 + ̄𝑦2
𝜏+1∶𝑛) = (2.7)

= 𝜏(𝑛 − 𝜏)
𝑛 (̄𝑦1∶𝜏 − ̄𝑦𝜏+1∶𝑛)2 = (2.8)

= 𝐶2
𝜏 . (2.9)

This gives us 𝐿𝑅𝜏 = 𝐶2
𝜏

𝜎2 .

2.3 Towards More General Models

The great thing of the LR test is that it’s extremely flexible, allowing us to detect other
changes then the simple change-in-mean case. As before, the procedure is to compute the LR
test conditional on a fixed location of a changepoint, e.g. 𝐿𝑅𝜏 , and range across all possible
values for 𝜏 to find the test statistics for our change.

2.3.1 Change-in-variance

To this end we will demonstrate how to construct a test for Gaussian change-in-variance, for
mean known. For simplicity, we will call our variance 𝜎2 = 𝜃, our parameter of interest,
and without loss of generality, we can center our data on zero (e.g. if 𝑥𝑡 ∼ 𝑁(𝜇, 𝜃), then
𝑥𝑡 − 𝜇 = 𝑦𝑡 ∼ 𝑁(0, 𝜃)). Then, our p.d.f for one observation will be given by:

𝑓(𝑦𝑡|𝜃) = 1√
2𝜋𝜃

exp{− 𝑦𝑡
2𝜃}.

Plugging in the main LR test formula, we find:

𝐿𝑅𝜏 = −2 log
⎧{
⎨{⎩

max𝜃 ∏𝑛
𝑡=1

1√
2𝜋𝜃 exp{− 𝑦𝑡

2𝜃}
max𝜃1,𝜃2

[(∏𝜏
𝑡=1

1
√2𝜋𝜃1

exp{− 𝑦𝑡
2𝜃1

})(∏𝑛
𝑡=𝜏+1

1
√2𝜋𝜃2

exp{− 𝑦𝑡
2𝜃2

}]
⎫}
⎬}⎭

And taking the log, and simplifying over the constant gives us:

31

𝐿𝑅𝜏 = − max
𝜃

𝑛
∑
𝑡=1

(− log(𝜃) − 𝑦2

𝜃) + max
𝜃1,𝜃2

[
𝜏

∑
𝑡=1

(− log(𝜃1) − 𝑦2

𝜃1
) +

𝑛
∑

𝑡=𝜏+1
(− log(𝜃2) − 𝑦2

𝜃2
)] =

(2.10)

= min
𝜃

𝑛
∑
𝑡=1

(log(𝜃) + 𝑦2

𝜃) − min
𝜃1,𝜃2

[
𝜏

∑
𝑡=1

(log(𝜃1) + 𝑦2

𝜃1
) +

𝑛
∑

𝑡=𝜏+1
(log(𝜃2) + 𝑦2

𝜃2
)] (2.11)

Now to solve the minimisation, we focus on the first term:

𝑓(𝑦1∶𝑛, 𝜃) =
𝑛

∑
𝑡=1

(log(𝜃) + 𝑦2

𝜃) = (𝑛 log(𝜃) + ∑𝑛
𝑡=1 𝑦2

𝜃) .

Taking the derivative with respect to 𝜃, gives:

𝑑
𝑑𝜃𝑓(𝑦1∶𝑛, 𝜃) = 𝑛

𝜃 − ∑𝑛
𝑡=1 𝑦2

𝜃2 .

Setting equal to zero and solving for 𝜃:

𝑛𝜃 −
𝑛

∑
𝑡=1

𝑦2 = 0

Which gives us: ̂𝜃 = ∑𝑛
𝑡=1 𝑦2

𝑛 = ̄𝑆1∶𝑛 the sample variance.

Solving the optimization for 𝜃1 and 𝜃2 similarly, gives us the values ̂𝜃1 = ̄𝑆1∶𝜏 , ̂𝜃2 = ̄𝑆(𝜏+1)∶𝑛.

Now, as 𝑓(𝑦1∶𝑛, ̂𝜃) = ̄𝑆1∶𝑛 + 𝑛 (why?) the final LR test simplifies to:

𝐿𝑅𝜏 = [𝑛 log(̄𝑆1∶𝑛) − 𝜏 log(̄𝑆1∶𝜏) − (𝑛 − 𝜏) log(̄𝑆(𝜏+1)∶𝑛)]

32

−10

−5

0

5

10

0 50 100 150 200
x

y

0

50

100

150

0 50 100 150 200
x

C
U

S
U

M

2.3.2 Change-in-slope

Another important example, and an alternative to detecting a change-in-mean, is detecting a
change in slope. In this section, we assume the data is still modeled as a signal plus noise, but
the signal itself is a linear function of time (e.g. non-stationary, with a change!). Graphically:

33

−120

−80

−40

0

0 50 100 150 200 250
x

y

More formally, let our data be modeled as:

𝑦𝑡 = 𝑓𝑡 + 𝜖𝑡, 𝑡 = 1, … , 𝑛,

where the noise vector 𝜖1∶𝑛 ∼ 𝑁(0, 1) consists of independent and identically distributed (i.i.d.)
normal random variables. In this scenario, for simplicity, we assume a known constant variance,
which without loss of generality, we take to be 1.

Under the null hypothesis 𝐻0, we assume that the signal is linear with a constant slope over
the entire sequence, i.e.,

𝑓𝑡 = 𝛼1 + 𝑡𝜃1, 𝑡 = 1, … , 𝑛,

where 𝛼1 is the intercept, and 𝜃1 is the slope. However, under the alternative hypothesis
𝐻1, we assume there is a changepoint at 𝜏 after which the slope changes. Thus, the signal
becomes:

𝑓𝑡 = 𝛼1 + 𝑡𝜃1, 𝑡 = 1, … , 𝜏; 𝑓𝑡 = 𝛼2 + 𝑡𝜃2, 𝑡 = 𝜏 + 1, … , 𝑛,

where 𝜃2 is the new intercept, and 𝜃3 is the new slope after the changepoint. In other words,
the model is showing a piecewise linear mean.

For this model, the log-likelihood ratio test statistic can be written as the square of a projection
of the data onto a vector 𝑣𝜏 , i.e.,

34

𝐿𝑅𝜏 = (𝑣⊤
𝜏 𝑦1∶𝑛)2 ,

where 𝑣𝜏 is a contrast vector that is piecewise linear with a change in slope at 𝜏 . This vector
is constructed such that, under the null hypothesis, the vector 𝑣⊤

𝜏 𝑦1∶𝑛 has variance 1, and
𝑣𝜏⊤𝑦1∶𝑛 is invariant to adding a linear function to the data. These properties uniquely define
the contrast vector 𝑣𝜏 , up to an arbitrary sign. Computations on how to obtain this likelihood
ration test, and how to construct this vector are beyond the scope of this module, but should
you be curious those are detailed in Baranowski, Chen, and Fryzlewicz (2019).

2.3.3 Revisiting our Simpsons data (again!)

So, going back to the Simpsons example… We mentioned how the belowed show rose rapidly
to success, and at one point, started to decline… A much better model would therefore be our
change-in-slope model!

To run the model, we can take advantage of the changepoint package, which by default is a
multiple changepoint package (we will see these in the next week), but whose simplest case
implements exactly our change-in-slope LR test.

Before we proceed, we need to load, clean and standardize our data:

Load Simpsons ratings data
simpsons_episodes <- read.csv("extra/simpsons_episodes.csv")
simpsons_episodes <- simpsons_episodes |>
mutate(Episode = id + 1, Season = as.factor(season), Rating = tmdb_rating)

simpsons_episodes <- simpsons_episodes[-nrow(simpsons_episodes),]

y <- simpsons_episodes$Rating

We can then run our model with:

library(changepoint)

data <- cbind(y, 1, 1:length(y))

out <- cpt.reg(data, method="AMOC") # AMOC is short for "At Most One Change"

print(paste0("Our changepoint estimate (chagepoints): ", cpts(out)))

[1] "Our changepoint estimate (chagepoints): 176"

35

plot(out)

0 200 400 600

4
5

6
7

8

Index

da
ta

.s
et

(x
)[

, 1
]

We can see that we now find a significant changepoint prior to episode The Simpsons Spin-Off
Showcase, which is anthology episode well over into season 8, which, according to our method,
is the beginning of the decline! However, some among you, might have noticed that there
are more then one changes in this dataset… We will see, in fact, how we can improve on our
estimation in the following weeks!

2.4 Exercises

2.4.1 Workshop 2

1. Compute the LR ratio to detect a change in the success probability of a Bernoulli Random
Variable.

a. Start by writing down the distribution of the model under the null, and find the
MLE. Extend this to the alternative

b. Compose the log-likelihood ratio, according to the equation Equation 2.2 introduced
above.

2.4.2 Lab 2

1. Write a function, that taking as input 𝑛 and a desired 𝛼 level for false positive rate,
returns the threshold for the cusum statistics, according to Section Section 2.1.1.

36

2. Construct a function that, taking as input 𝑛, a desired 𝛼 , and a replicates parameter,
runs a Monte Carlo simulation to tune an empirical penalty for the CUSUM change-in-
mean on a simple Gaussian signal. Tip: You can reuse the function for computing the
CUSUM statistics that you built the last week

3. Compare for a range of increasingly values of n, e.g. 𝑛 = 100, 500, 1000, 10.000, and for
few desired levels of alpha, the Monte Carlo threshold with the theoretically justified
threshold. Plot the results, to recreate the plot above.

4. Using the Test the Simpsons dataset, and the monte carlo threshold, find a critical level
for your CUSUM statistics, and declare a change with the change-in-mean model.

37

3 Multiple changepoints

3.1 Introduction

In real-world data, it is common to encounter situations where more than one change occurs.
When applying the CUSUM statistic in such cases, where there are multiple changes, the
question arises: how does CUSUM behave, and how can we detect these multiple changes
effectively?

3.1.1 Real Example: Genomic Data and Neuroblastoma

To motivate this discussion, we return to the example from week 1: detecting active genomic
regions using ChIP-seq data. Our goal here is to identify copy number variations (CNVs)—
structural changes in the genome where DNA sections are duplicated or deleted. These vari-
ations can impact gene expression and are linked to diseases like cancer, including neuroblas-
toma. The dataset we’ll examine consists of logratios of genomic probe intensities, which help
us detect changes in the underlying DNA structure.

Statistically our objective is to segment this logratio sequence into regions with different means,
corresponding to different genomic states:

38

−0.5

0.0

0.5

0 50 100 150 200 250
position/1e+06

lo
gr

at
io

 (
no

is
y

co
py

 n
um

be
r

m
ea

su
re

m
en

t)

As seen from the plot, the data is noisy, but there are visible shifts in the logratio values,
suggesting multiple changes in the underlying copy number. By the end of this chapter, we
will segment this sequence!

3.1.2 Towards multiple changes

Under this framework, the observed sequence 𝑦𝑡 can be modeled as a piecewise constant signal
with changes in the mean occurring at each changepoint 𝜏𝑘. A plausible model for the change-
in-mean signal is given by

𝑦𝑡 = 𝜇𝑘 + 𝜖𝑡, for 𝜏𝑘 ≤ 𝑡 < 𝜏𝑘+1, 𝑘 = 0, 1, … , 𝐾,

where 𝜇𝑘 is the mean of the 𝑘-th segment, and 𝜖𝑡 ∼ 𝒩(0, 𝜎2) are independent Gaussian noise
terms with mean 0 and (known) variance 𝜎2.

As a starting example, we can generate a sequence with 4 segments, with 𝜏1 = 50, 𝜏2 =
100, 𝜏3 = 150 and means 𝜇1 = 2, 𝜇2 = 0, 𝜇3 = −1 and 𝜇4 = 2. Running the CUSUM statistic
in this scenario with multiple changes, leads to the following 𝐶2

𝜏 trace:

39

−2

0

2

4

0 100 200 300 400
x

y

0

50

100

150

200

0 100 200 300 400
x

C
U

S
U

M

From this, we notice that our test still has power to detect some of the changes, but the
estimate that we get, is initially wrong. Δ𝜇 = |𝜇1 −𝜇2|. Is power lost when there is more then
one change in our test?

Well, to answer this question, we can compare the values of the CUSUM statistic ran on the
whole dataset (as above), with the values of the CUSUM, ran on a subset containing only one
change:

Warning: Removed 199 rows containing missing values or values outside the scale range
(`geom_line()`).

40

−2

0

2

4

0 50 100 150 200
x

y

0

100

200

300

400

0 50 100 150 200
x

C
U

S
U

M

We can see that max of the old cusum (the line in grey) is much lower than the one where we
isolate the sequence on one single change! So there is an effective loss of power in this scenario
in analyzing all changes together, as some changes are masking the effects of others…

This gives us motivation to move towards some methodology that tries to estimate all changes
locations jointly, rather then one at a time!

3.1.3 The cost of a segmentation

Well, so far we only worked with one scheme that tried to split a sequence in a hald

But how can we work in case we have more than one change? Well, we need to introduce the
cost of a segment.

If we assume the data is independent and identically distributed within each segment, for
segment parameter 𝜃, then this cost can be obtained through:

ℒ(𝑦𝑠+1∶𝑡) = min
𝜃

𝑡
∑

𝑖=𝑠+1
−2 log(𝑓(𝑦𝑖, 𝜃))

with 𝑓(𝑦, 𝜃) being the likelihood for data point 𝑦 if the segment parameter is 𝜃. Now, for
example, in the gaussian case this cost is given by:

41

ℒ(𝑦𝑠∶𝑡) = 1
𝜎2

𝑡
∑
𝑖=𝑠

(𝑦𝑖 − ̄𝑦𝑠∶𝑡)
2

The cost for the full segmentation will be given by the sum across all segments:

𝐾
∑
𝑘=0

ℒ(𝑦𝜏𝑘+1∶𝜏𝑘+1
)

Interestingly, the cost of a full segmentation is closely related to the LR test. Consider, a single
Gaussian change-in-mean at time 𝜏 , splitting the data into two segments: 𝑦1∶𝜏 and 𝑦𝜏+1∶𝑛. The
cost of this segmentation is:

ℒ(𝑦1∶𝜏) + ℒ(𝑦𝜏+1∶𝑛) = 1
𝜎2 [

𝜏
∑
𝑖=1

(𝑦𝑖 − ̄𝑦1∶𝜏)2 +
𝑛

∑
𝑖=𝜏+1

(𝑦𝑖 − ̄𝑦(𝜏+1)∶𝑛)2]

Which is essentially the same LR test as we saw last week, without the null component.
Specifically, for one change, minimizing the segmentation cost over all possible changepoints
locations 𝜏 is equivalent to maximizing the CUSUM statistic.

3.1.4 The “best” segmentation

We now have a way of evaluating how “good” a segmentation is, so it’s only natural to ask the
question: what would be the best one?

Well, one way would be to, say, finding the the best set of 𝜏 = 𝜏0, … , 𝜏𝐾+1 changepoints that
minimise the cost:

min
𝐾∈ℕ𝜏1,…,𝜏𝐾

𝐾
∑
𝑘=0

ℒ(𝑦𝜏𝑘+1∶𝜏𝑘+1
). (3.1)

Which one would this be? Say that for instance we range the 𝐾 = 1, … , 𝑛, and at each step
we find the best possible segmentation. Graphically, we would be observing the following:

42

−2

0

2

4

0 100 200 300 400
t

y
Segments: 1 Seg. Cost: 1042

−2

0

2

4

0 100 200 300 400
t

y

Segments: 2 Seg. Cost: 821

−2

0

2

4

0 100 200 300 400
t

y

Segments: 3 Seg. Cost: 441

−2

0

2

4

0 100 200 300 400
t

y

Segments: 4 Seg. Cost: 400

43

Well, arguably we would like to stop at 4, which we know is the real number of segments, but
the cost keep going down…

−2

0

2

4

0 100 200 300 400
t

y

Segments: 10 Seg. Cost: 369

−2

0

2

4

0 100 200 300 400
t

y

Segments: 100 Seg. Cost: 133

And finally:

−2

0

2

4

0 100 200 300 400
t

y

Segments: 400 Seg. Cost: 0

44

Well, it turns out, that according to the minimization above, the optimal segmentation across
all would be the one that puts each point into its own segment!

Well, there are different solutions to this problem. The first one we will see, is a divide-
and-conquer greedy approach, called Binary Segmentation, and the second one will aim a
generating a different optimization to the one below that will find the optimal segmentation
up to a constant to avoid over-fitting!

3.2 Binary Segmentation

Binary Segmentation (BS) is a procedure from ? and ?. Binary segmentation works like this:

1. Start with a test for a change 𝜏 that splits a sequence into two segments and to check if
the cost over those two segments, plus a penalty 𝛽 ∈ ℝ, is smaller then the cost computed
on the whole sequence:

ℒ(𝑦1∶𝜏) + ℒ(𝑦𝜏+1∶𝑛) + 𝛽 < ℒ(𝑦1∶𝑛) (3.2)

where the segment cost ℒ(⋅), is as in Equation 3.1.

2. If the condition in Equation 3.2 is true for at least one 𝜏 ∈ 1, … , 𝑛, then the 𝜏 that mini-
mizes ℒ(𝑦1∶𝜏) + ℒ(𝑦𝜏+1∶𝑛) is picked as a first changepoint and the test is then performed

45

on the two newly generated splits. This step is repeated until no further changepoints
are detected on all resulting segments.

3. If there are no more resulting valid splits, then the procedure ends.

Some of you might have noted how the condition in Equation 3.2 is closely related to the LR
test in Equation 2.2. In fact, rearranging equation above, gives us:

−ℒ(𝑦1∶𝑛) + ℒ(𝑦1∶𝜏) + ℒ(𝑦𝜏+1∶𝑛) = −𝐿𝑅𝜏
2 < −𝛽.

The −𝛽 acts exactly as the constant 𝑐 for declaring a change, and it adds a natural stopping
condition, solving the issue of overfitting that we mentioned in the previous section! Binary
Segmentation, in fact, does nothing more then iteratively running a LR test, until no changes
are found anymore!

This gives us a strategy to essentially apply a test that is locally optimal for one change, such
as the Likelihood Ratio test, to solve a multiple changepoint segmentation. For this reason,
BS is often employed to extend single changepoint procedures to multiple changes procedures,
and hence it is one of the most prominent methods in the literature.

3.2.1 Binary Segmentation in action

Having introduced the main idea, we show now how binary segmentation works in action with
an example above. Say that we set a 𝛽 = 2 log(400) = 11.98.

Step 1: We start by computing the cost as in Equation 3.2, and for those that are less then 𝛽,
we pick the smallest. This will be our first changepoint estimate, and the first point of split.

In the plots below, the blue horizontal line is the mean signal estimated for a given split, while
in the cusum the pink will represent the values of the LR below the threshold 𝛽, and red
vertical line will show the min of the test statistics. When the cost is below the beta line, this
will be our changepoint estimate.

In our case, we can see that the min of our cost has been achieved for ̂𝜏 = 100, and since this
is below the threshold, it’s our first estimated changepoint!

46

−2

0

2

4

0 100 200 300 400
x

y

−90

−60

−30

0

0 100 200 300 400
x

LR

Step 2:

From the first step, we have to check now two splits:

• The first left split, 1-LEFT in the plot below, covers data 𝑦1∶100. We can see that from
here, the min of our statistic is below the threshold, therefore we won’t declare any
further change in this subset.

• The first right split, 1-RIGHT covers data 𝑦101∶400. We can see that here, the min of the
statistics, is below the threshold, and therefore we identify a second change at ̂𝜏 = 297.
This is not exactly 300, so we don’t have a perfect estimate. Despite this is not ideal,
this is the best point we have found and therefore we have to continue!

47

0

1

2

3

4

0 25 50 75 100
x

y

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

0 25 50 75 100
x

LR
1−LEFT

−2

0

2

4

100 200 300 400
x

y

−150

−100

−50

0

100 200 300 400
x

LR

1−RIGHT

Step 3:

In step 3, we have to check again two splits splits:

• The second left split, 2-LEFT in the plot below, covers data 𝑦101∶297. Now, it’s in
this split that the statistics goes below the threshold! The third estimated change is at
̂𝜏 = 203, again slightly off the real one at 200. We continue investigating this split…

• The second right split, 2-RIGHT covers data 𝑦298∶400. In this last split, the min is not
over the threshold, therefore we stop the search.

48

−2

0

2

100 150 200 250 300
x

y

−20

−15

−10

−5

0

100 150 200 250 300
x

LR
2−LEFT

−1

0

1

2

3

4

300 325 350 375 400
x

y

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

300 325 350 375 400
x

LR

2−RIGHT

Step 4:

In step 4, we check:

• The third left split, 3-LEFT in the plot below, covers data 𝑦101∶203. The minimum, in
here is not over the threshold.

• The third right split, 3-RIGHT covers data 𝑦204∶298. Similarly, the minimum is not over
the treshold.

49

−3

−2

−1

0

1

100 125 150 175 200
x

y

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

100 125 150 175 200
x

LR
3−LEFT

−3

−2

−1

0

1

2

3

200 225 250 275 300
x

y
−12.5

−10.0

−7.5

−5.0

−2.5

0.0

200 225 250 275 300
x

LR

3−RIGHT

The algorithm therefore terminates!

With this graphical description in mind, we formally describe the Binary Segmentation
algorithm as a recursive procedure, where the first iteration would be simply given by
BinSeg(𝑦1∶𝑛, 𝛽).

BinSeg(𝑦𝑠∶𝑡, 𝛽)

INPUT: Subseries 𝑦𝑠∶𝑡 = {𝑦𝑠, … , 𝑦𝑡} of length 𝑡 − 𝑠 + 1, penalty 𝛽
OUTPUT: Set of detected changepoints 𝑐𝑝

IF 𝑡 − 𝑠 ≤ 1
RETURN {} // No changepoint in segments of length 1 or less

COMPUTE
𝒬 ← min

𝜏∈{𝑠,…,𝑡−1}
[ℒ(𝑦𝑠∶𝜏) + ℒ(𝑦𝜏+1∶𝑡) − ℒ(𝑦𝑠∶𝑡) + 𝛽]

IF 𝒬 < 0

50

̂𝜏 ← arg min
𝜏∈{𝑠,…,𝑡−1}

[ℒ(𝑦𝑠∶𝜏) + ℒ(𝑦𝜏+1∶𝑡) − ℒ(𝑦𝑠∶𝑡)]

𝑐𝑝 ← { ̂𝜏 , BinSeg(𝑦𝑠∶ ̂𝜏 , 𝛽), BinSeg(𝑦 ̂𝜏+1∶𝑡, 𝛽) + ̂𝜏}
RETURN 𝑐𝑝

RETURN {} // No changepoint if −𝐿𝑅/2 is above penalty −𝛽

3.3 Optimal Partitioning

Another solution to avoid the over-fitting problem of Equation 3.1 lies in introducing a penalty
term that discourages too many changepoints, avoiding overfitting. This is known as the
penalised approach.

To achieve this, we want to minimize the following cost function:

𝑄𝑛,𝛽 = min
𝐾∈ℕ

[min
𝜏1,…,𝜏𝐾

𝐾
∑
𝑘=0

ℒ(𝑦𝜏𝑘+1∶𝜏𝑘+1
) + 𝛽𝐾] , (3.3)

where 𝑄𝑛,𝛽 represents the optimal cost for segmenting the data up to time 𝑛 with a penalty
$ �$ that increases with each additional changepoint 𝐾. With the 𝛽 term, for every new
changepoint added, the cost of the full segmentation increases, discouraging therefore models
with too many changepoints.

Unlike Binary Segmentation, which works iteratively and makes local decisions about poten-
tial changepoints, and as we have seen it is prone to errors, solving 𝑄𝑛,𝛽 ensures that the
segmentation is globally optimal, as in the location of the changes are the best possible to
minimise our cost.

Now, directly solving this problem using a brute-force search is computationally prohibitive,
as it would require checking every possible combination of changepoints across the sequence:
the number of possible segmentations grows exponentially as 𝑛 increases…

Fortunately, this problem can be solved efficiently using a sequential, dynamic programming
algorithm: Optimal Partitioning (OP), from Jackson et al. (2005). OP solves Equation 3.3
exactly through the following recursion.

We start with 𝒬0,𝛽 = −𝛽, and then, for each 𝑡 = 1, … , 𝑛, we compute:

𝒬𝑡,𝛽 = min
0≤𝜏<𝑡

[𝒬𝜏,𝛽 + ℒ(𝑦𝜏+1∶𝑡) + 𝛽] . (3.4)

51

Here, 𝒬𝑡,𝛽 represents the optimal cost of segmenting the data up to time 𝑡. The al-
gorithm builds this solution sequentially by considering each possible segmentation
𝒬0,𝛽, ⋯ , 𝒬𝑡−2,𝛽, 𝒬𝑡−1,𝛽 before the current time 𝑡, plus the segment cost up to current time 𝑡,
ℒ(𝑦𝜏+1∶𝑡).

3.3.1 Optimal partitinioning in action

This recursion can be quite hard to digest, and is, as usual, best described graphically.

Step 1 Say we are at 𝑡 = 1. In this case, according to equation above, the optimal cost up to
time one will be given by (remember that the 𝛽 cancels out with 𝑄0,𝛽!):

𝒬1,𝛽 = [−𝛽 + ℒ(𝑦1∶1) + 𝛽] = ℒ(𝑦1∶1)

0 2 4 6 8 10

t

L(y1:1)

Step 2. Now, at the second step, we have to minimise between two segmentations:

• One with the whole sequence in a second segment alone (again, 𝛽 cancels out with
𝑄0,𝛽 = −𝛽), and this will be given by ℒ(𝑦1∶2) (dotted line)

• One with the optimal segmentation from step 1 𝒬1,𝛽 (whose cost considered only the
first point in its own segment!), to which we have to sum the cost relative to a second
segment ℒ(𝑦2∶2) that puts the second point alone, and the penalty 𝛽 as we have added
a new segment!

We minimise across the two, and this gives us 𝑄2,𝛽.

52

0 2 4 6 8

t

L(y1:2)
Q1β + L(y2:2) + β

Step 3: Similarly, at 𝑡 = 3 we have now three segmentations to choose from:

• The one that puts the first three observations in the same segment, whose cost will be
given simply by ℒ(𝑦1∶2),

• The one considering the optimal segmentation from time 1, plus the cost of adding an
extra segment with observation 2 and 3 together

• Finally the optimal from segmentation 2, 𝒬2,𝛽, plus the segment cost of fitting an extra
segment with point 3 alone. Note that 𝒬2,𝛽 will come from the step before: if we would
have been beneficial to add a change, at the previous step, this information is carried
over!

Again, we pick the minimum across these three to get 𝒬3,𝛽, and proceed.

0 2 4 6 8

t

L(y1:3)
Q1β + L(y2:3) + β
Q2β + L(y3:3) + β

Step 𝑛 Until the last step! Which would look something like this:

53

0 2 4 6 8

t

L(y1:6)
Q1β + L(y2:6) + β
Q2β + L(y3:6) + β
Q3β + L(y4:6) + β
Q4β + L(y5:6) + β
Q5β + L(y6:6) + β

A formal description of the algorithm can be found below:

INPUT: Time series 𝑦 = (𝑦1, ..., 𝑦𝑛), penalty 𝛽
OUTPUT: Optimal changepoint vector 𝑐𝑝𝑛

Initialize 𝒬0 ← −𝛽
Initialize 𝑐𝑝0 ← {}

FOR 𝑡 = 1, … , 𝑛
𝒬𝑡 ← min0≤𝜏<𝑡 [𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) + 𝛽]
̂𝜏 ← arg min0≤𝜏<𝑡 [𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) + 𝛽]

𝑐𝑝𝑡 ← (𝑐𝑝 ̂𝜏 , ̂𝜏) // Append the changepoint to the list at the last optimal point

RETURN 𝑐𝑝𝑛

Running the Optimal Partitioning method on our example scenario, with the same penalty
𝛽 = 2 log(400) = 11.98 as above, gives changepoint locations 𝜏1∶4 = {100, 203, 301}.

Loading required package: zoo

Attaching package: 'zoo'

54

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

Successfully loaded changepoint package version 2.3
WARNING: From v.2.3 the default method in cpt.* functions has changed from AMOC to PELT.
See NEWS for details of all changes.

Time

y

0 100 200 300 400

−
2

0
2

4

So we can see how on this dataset in particular, OP performs slightly better then Binary
Segmentation on the last change, getting closer to the real changepoint of 300!

3.3.2 Neuroblastoma example

Returning to the original example at the start of the module, the neuroblastoma dataset, we
run both Binary Segmentation, and Optimal Partitioning.

We report results in the plot below (blue for BS, green for OP). In this case, the algorithms
return the same four changepoints:

55

41 113 157

41 113 157
−6

−4

−2

0

2

4

0 50 100 150 200
Time

y

Some of you might come up with two (very interesting) questions that hopefully we will answer
next week…

• If the methods perform roughly the same, which one do I choose?

• Why is the data on a different scale then that presented at the start of the chapter?

3.4 Exercises

3.4.1 Workshop 3

1. For the vector 𝑦1∶4 = (0.5, −0.1, 12.1, 12.4), and a penalty 𝛽 = 5 calculate, pen on paper
(and calculator), all the Optimal Partitioning and Binary Segmentation steps. TIP:
To speed up computations, you want to pre-compute all segment costs ℒ(𝑦𝑙∶𝑢). I have
pre-computed some of these costs in the table below:

𝑙\𝑢 1 2 3 4
1 ℒ(𝑦1∶1) 0.18 94.59 145.43
2 0.00 ℒ(𝑦2∶3) 101.73
3 0.00 ℒ(𝑦3∶4)
4 0.00

56

3.4.2 Lab 3

1. Code the Optimal Partitioning algorithm for the Gaussian change-in-mean case.

Your function should take as input three things:

• A vector y, our observations
• A double penalty, corresponding to the 𝛽 penalty of our penalised cost
• A function COST. This function should take as input arguments y, s, t, and act as

ℒ(𝑦𝑠∶𝑡). You fill find a skeleton below.

OP <- function (y, penalty, COST) {

pre-compute all the costs here

your initialization here

for (t in 1:n) {

your recursion here

}

return(changepoints)
}

For this exercise, we are implementing the Gaussian change-in-mean case. Therefore, a skeleton
for our cost function will be:

costMean = function(y, s, t) {

code for computing the Gaussian change-in-mean cost here

return(your_cost)
}

You should be then able to call your OP function as:

set.seed(123)
y <- c(rnorm(100), rnorm(100, 5), rnorm(100, -1))
OP(y, 15, costMean)

57

This should return 100, 200.

Tips:

a. Again, you can pre-compute all the possible $\mathcal{L}(y_{l:u})$, for $u \geq l$ to save computational time.

b. Be very careful with indexing... R starts indexing at 1, however, in the pseudocode, you have one element that starts at 0...

58

4 PELT, WBS and Penalty choices

4.1 Drawbacks of OP and BS

When deciding which segmentation approach to use, Binary Segmentation (BS) and Optimal
Partitioning (OP) each offer different strengths. The choice largely depends on the character-
istics of the data and the goal of the analysis.

4.1.1 Quality of the Segmentation

Generally, Optimal Partitioning (OP) provides the most accurate segmentation, especially
when we have a well-defined model and expect precise changepoint detection. OP ensures that
the solution is optimal by globally minimizing the cost function across all possible segmenta-
tions. This is ideal for datasets with clear changes, even if noise is present.

Let’s consider a case with true changepoints at 𝜏 = 100, 200, 300, and segment means 𝜇1∶4 =
2, 1, −1, 1.5:

−2

0

2

4

0 100 200 300 400
x

y

59

While the underlying signal follows these clear shifts, noise complicates segmentation. Binary
Segmentation uses a greedy process where each iteration looks for the largest changepoint.
Although fast, this local search can make mistakes if the signal isn’t perfectly clear, particularly
in the early stages of the algorithm. For example, running BS on this dataset introduces a
mistake at 𝜏 = 136, as shown in the plot below:

−2

0

2

4

0 100 200 300 400
x

y

−75

−50

−25

0

0 100 200 300 400
x

LR

This error is carried in the subsequent steps, and the full binary segmentation algorithm will
output an additional change at 𝜏 = 136… Optimal Partitioning (OP), on the other hand,
evaluates all possible segmentations considers the overall fit across the entire sequence. It
is therefore less susceptible to adding “ghost” changepoints, as rather than focusing on the
largest change at each step.

To illustrate, we compare the segmentations generated by both approaches:

60

102 136 200 302

102 200 302

−2

0

2

4

0 100 200 300 400
Time

y

4.1.2 Computational Complexity

Well, you may ask why not using OP all the time, then? Well, in changepoint detection,
in which is the most appropiate method, we often have to keep track of the computational
performance too, and Binary Segmentation is faster on average. For this reason, for large
datasets where approximate solutions are acceptable, it might be the best option.

Specifically:

• Binary Segmentation starts by dividing the entire sequence into two parts, iteratively
applying changepoint detection to each segment. In the average case, it runs in 𝒪(𝑛 log 𝑛)
because it avoids searching every possible split point. However, in the worst case (if all
data points are changepoints), the complexity can degrade to 𝒪(𝑛2), as each step can
require recalculating test statistics for a growing number of segments.

• Optimal Partitioning, on the other hand, solves the changepoint problem by recur-
sively considering every possible split point up to time 𝑡. The result is an optimal seg-
mentation, but at the cost of 𝒪(𝑛2) computations. This holds true for both the average
and worst cases, as it always requires a full exploration of all potential changepoints.

61

4.2 PELT and WBS

Good news is, despite both algorithms have drawbacks, following recent developments, those
have been solved. In the next sections, we will introduce two new algorithms, PELT and
WBS.

4.2.1 PELT: an efficient solution to OP

In OP, we can reduce the numbers of checks to be performed at each iteration, reducing the
complexity. This operation is called pruning. Specifically, given a cost function ℒ(⋅), on the
condition that there exists a constant 𝜅 such that for every 𝑙 < 𝜏 < 𝑢:

ℒ(𝑦𝑙+1∶𝜏) + ℒ(𝑦𝜏+1∶𝑢) + 𝜅 ≤ ℒ(𝑦𝑙+1∶𝑢)

It is possible to prune without resorting to an approximation. For many cost functions, such
as the Gaussian cost, such constant 𝜅 exists.

Then, for any 𝜏 < 𝑠, if

𝒬𝜏,𝛽 + ℒ(𝑦𝜏+1∶𝑡) + 𝜅 ≥ 𝒬𝑡,𝛽

holds, then for any 𝑇 > 𝑡, 𝜏 can never be the optimal change location prior to time 𝑇 .

Using this condition, the PELT algorithm – acronym for Pruned Exact Linear Time – (Killick,
Fearnhead, and Eckley (2012)) solves exactly the penalised minimization of Equation 3.4
with an expected computational cost that can be linear in 𝑛 – while still retaining 𝒪(𝑛2)
computational complexity in the worst case. This is achieved by reducing the number of
segment costs to evaluate at each iteration via an additional pruning step based on Condition
Equation 3.4. That is, by setting 𝜅 = 0, if

𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) ≥ 𝒬𝑡

then we can safely prune the segment cost related to 𝜏 , as 𝜏 will never be the optimal change-
point location up to any time 𝑇 > 𝑡 in the future.

The intuition, is that we would prune at every change detected. And if the changes increase
linearly with the length of the data, this means that our algorithm will achieve a 𝒪(𝑛 log 𝑛)
computational complexity, without any drawbacks!

62

To reduce computational complexity, we can slightly modify the OP algorithm, to add the
pruning condition above:

PELT

INPUT: Time series 𝑦 = (𝑦1, ..., 𝑦𝑛), penalty 𝛽
OUTPUT: Optimal changepoint vector 𝑐𝑝𝑛

Initialize 𝒬0 ← −𝛽
Initialize 𝑐𝑝0 ← {} // a set of vectors ordered by time
Initialise 𝑅1 = (0) // a vector of candidate change locations

FOR 𝑡 = 1, … , 𝑛
𝒬𝑡 ← min𝜏∈𝑅𝑡

[𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) + 𝛽]
̂𝜏 ← arg min𝜏∈𝑅𝑡

[𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) + 𝛽]
𝑐𝑝𝑡 ← (𝑐𝑝 ̂𝜏 , ̂𝜏) // Append the changepoint to the list at the last optimal point
𝑅𝑡+1 ← {𝜏 ∈ 𝑅𝑡 ∶ 𝒬𝜏 + ℒ(𝑦𝜏+1∶𝑡) < 𝒬𝑡} // select only the change locations that are still

optimal
𝑅𝑡+1 ← (𝑅𝑡+1, 𝑡) // add t to the points to check at the next iteration

RETURN 𝑐𝑝𝑛

63

As the segmentation retained is effectively the same, there are literally no disadvantages in
using PELT over OP, if the cost function allows to do so.

However, PELT still has some disadvantages:

• PELT pruning works only over some cost functions, those for which the condition above
is true. For example, in a special case of change-in-slope, as we will see in the workshop,
we have that the cost from the next change depends on the location of the previous one,
making it impossible for PELT to prune without loosing optimality.

• We mentioned above how PELT over iterations at which a change is detected. For signals
where changes are not frequent, PELT does not benefits from. A more sophisticated
approach is that of FPOP, that prunes at every iteration. FPOP employs a different
type of pruning, called functional pruning, that at every iteration only check costs that
are likely associated to a change. However, despite the pruning is stronger FPOP works
only over few selected models.

4.2.2 WBS: Improving on Binary Segmentation

In BS, one of the issues that may arise, is an incorrect segmentation. WBS, Fryzlewicz (2014),
is a multiple changepoints procedures that improve on the BS changepoint estimation via
computing the initial segmentation cost of BS multiple times over 𝑀 + 1 random subsets of
the sequence, 𝑦𝑠1∶𝑡1

, … , 𝑦𝑠𝑀 ∶𝑡𝑀
, 𝑦1∶𝑛, picking the best subset according to what achieves the

smallest segmentation cost and reiterating the procedure over that sample accordingly. The
idea behind WBS lies in the fact that a favorable subset of the data 𝑦𝑠𝑚∶𝑡𝑚

could be drawn
which contains a true change sufficiently separated from both sides 𝑠𝑚, 𝑡𝑚 of the sequence. By
the inclusion of the 𝑦1∶𝑛 entire sequence among the subsets, it is guaranteed that WBS will do
no worse than the simple BS algorithm.

We can formally provide a description of WBS as a recursive procedure.

We first start by drawing the set of intervals ℱ = {[𝑠1, 𝑡1], … , [𝑠𝑀 , 𝑡𝑀]} where:

𝑠𝑚 ∼ U(1, 𝑛), 𝑡𝑚 ∼ U(𝑠𝑚 + 1, 𝑛)

Then, WBS will have just a couple of alterations to the original Binary Segmentation:

WBS(𝑦𝑠∶𝑡, 𝛽)

64

INPUT: Subseries 𝑦𝑠∶𝑡 = {𝑦𝑠, … , 𝑦𝑡} of length 𝑡 − 𝑠 + 1, penalty 𝛽
OUTPUT: Set of detected changepoints 𝑐𝑝

IF 𝑡 − 𝑠 ≤ 1
RETURN {} // No changepoint in segments of length 1 or less

ℳ𝑠,𝑒 = Set of those indices m for which [𝑠𝑚, 𝑡𝑚] ∈ ℱ is such that [𝑠𝑚, 𝑡𝑚] ⊂ [𝑠, 𝑡].
ℳ ← ℳ ∪ {[1, 𝑛]}
COMPUTE
𝒬 ← min

[𝑠𝑚,𝑡𝑚]∈ℳ
𝜏∈{𝑠𝑚,…,𝑡𝑚}

[ℒ(𝑦𝑠∶𝜏) + ℒ(𝑦𝜏+1∶𝑡) − ℒ(𝑦𝑠∶𝑡) + 𝛽]

IF 𝒬 < 0
̂𝜏 ← arg min

[𝑠𝑚,𝑡𝑚]∈ℳ
𝜏∈{𝑠𝑚,…,𝑡𝑚}

[ℒ(𝑦𝑠∶𝜏) + ℒ(𝑦𝜏+1∶𝑡) − ℒ(𝑦𝑠∶𝑡)]

𝑐𝑝 ← { ̂𝜏 , WBS(𝑦𝑠∶ ̂𝜏 , 𝛽), WBS(𝑦 ̂𝜏+1∶𝑡, 𝛽) + ̂𝜏}
RETURN 𝑐𝑝

RETURN {} // No changepoint if −𝐿𝑅/2 is above penalty −𝛽

One of the major drawbacks of WBS is that in scenarios where we find frequent changepoints, in
order to retain a close-to-optimal estimation, one should draw a higher number of 𝑀 intervals
(usually of the order of thousands of intervals). This can be problematic given that WBS has
computational complexity that grows linearly in the total length of the observations of the
subsets.

4.3 Penalty Selection

In previous sections, we applied the changepoint detection algorithms using a penalty term of
2 log(𝑛). As we’ll see, this is the BIC penalty (Bayes Information Criterion), a widely used
penalty in changepoint detection. However, it is important to note that BIC is just one of
several penalty types that can be applied…

As in the single change, some penalty may be more conservative then others! Choosing the
correct penalty is key to obtaining a sensible segmentation of the data. The penalty term
plays a significant role in balancing the goodness-of-fit of the model with its complexity:

65

• A lower penalty may lead to an over-segmentation, where too many changepoints are
detected

• A higher penalty could under-segment the data, missing important changepoints.

The three most common penalties, are:

• AIC (Akaike Information Criterion): The AIC penalty takes value of 2𝑝, where 𝑝 is
the number of parameters that one adds to the model. In multiple changes scenario, every
new change, we add a new parameter to the model (as we estimate the signal). This, in
OP and BS approaches, where the penalty is added at different iterations, shouls we fit
a change, this translates in 𝛽 = 2 × 2 = 4 as our 𝛽. While simple to apply, AIC is known
to be asymptotically inconsistent: it tends to overestimate the number of changepoints
as the sample size increases. Intuitively, this is because AIC is designed to minimize the
prediction error rather than to identify the true model structure. It favors models that
fit the data well, often leading to the inclusion of more changepoints than necessary.

• BIC (Bayesian Information Criterion): The BIC penalty is given by 𝑝 log(𝑛). In our
approaches, this translates to: 𝛽 = 2 log(𝑛), that we add for each additional changepoint.
BIC is generally more conservative than AIC and is consistent, meaning it will not
overestimate the number of changepoints as the sample size grows.

• MBIC (Modified BIC): The MBIC penalty, from Zhang and Siegmund (2007), is
an extension of the BIC that includes an extra term to account for the spacing of the
changepoints. We can approximate it, in practice, by using a value of 𝛽 = 3 log(𝑛) as
our penalty. In practice, it is even more conservative then the BIC penalty.

4.3.1 Example in R: Comparing Penalties with PELT

Let’s now examine how different penalties impact the results of changepoint detection using
the changepoint package in R. We’ll focus on the PELT method and compare the outcomes
when using AIC, BIC, and MBIC penalties.

As a data sequence, we will pick a different chromosome in our Neuroblastoma dataset. Can
you tell, by eye, how many changes are in this sequence?

66

−2

0

2

4

0 50 100 150
position/1e+06

lo
gr

at
io

 (
no

is
y

co
py

 n
um

be
r

m
ea

su
re

m
en

t)
Chromosome 5

We can compare the three penalties using the changepoint library, as below:

data <- one.dt$logratio
n <- length(data)

Apply PELT with AIC, BIC, and MBIC penalties
cp_aic <- cpt.mean(data, method = "PELT", penalty = "AIC")
cp_bic <- cpt.mean(data, method = "PELT", penalty = "BIC")
cp_mbic <- cpt.mean(data, method = "PELT", penalty = "MBIC")

Extract changepoint locations for each penalty
cp_aic_points <- cpts(cp_aic)
cp_bic_points <- cpts(cp_bic)
cp_mbic_points <- cpts(cp_mbic)

Create a data frame for plotting with ggplot2
plot_data <- data.frame(
index = 1:n,
data = data)

Create data frames for changepoints with corresponding method labels
cp_df <- bind_rows(
data.frame(index = cp_aic_points, method = "AIC"),
data.frame(index = cp_bic_points, method = "BIC"),

67

data.frame(index = cp_mbic_points, method = "MBIC")
)

ggplot(plot_data, aes(x = index, y = data)) +
geom_point() + # Plot the data line first
geom_vline(data = cp_df, aes(xintercept = index, color = method)) +
facet_grid(method ~ .) +
labs(title = "PELT with Different Penalties: AIC, BIC, MBIC", x = "Index", y = "Data") +
theme_minimal() +
theme(legend.position = "none")

A
IC

B
IC

M
B

IC

0 50 100 150

−2

0

2

4

−2

0

2

4

−2

0

2

4

Index

D
at

a

PELT with Different Penalties: AIC, BIC, MBIC

We can see how from this example, the AIC likely overestimated the number of changepoints,
while BIC and MBIC provided more conservative and reasonable segmentations. By eye, the
MBIC seems to have done the better job!

4.3.2 CROPS: running with multiple penalties

Hopefully, the example above should have highlighted that finding the right penalty can be
tricky. One solution, would be to run our algorithm for a range of penalties, and then choose
a posteriori what the best segmentation is. The CROPS algorithm, from Haynes, Eckley,
and Fearnhead (2017), is based on this idea. CROPS works alongside an existing penalised
changepoint detection algorithm, like PELT or WBS: as long as the changepoint method can
map a penalty value to a (decreasing) segmentation cost, CROPS could be applied.

68

CROPS takes as input a range of penalties [𝛽min, 𝛽max], and explores all possible segmentations
within those two penalties in a clever way, to fit the changepoint model as least as we can. As
CROPS calculates changepoints for a particular penalty, it keeps track of the range of penalty
values where that specific set of changepoints is valid. This works because, for certain ranges
of penalties, the set of changepoints stays the same.

E.g. for penalties between 𝛽1 and 𝛽2, the changepoints might remain the same, so CROPS
only needs to run the changepoint detection once for that range.

We won’t introduce the method formally, but in an intuitive way, CROPS works in this way:

1. It starts calculates changepoints at two extreme penalties: 𝛽min and 𝛽max. If those are
the same, it quits.

2. Alternatively, as a binary search, CROPS selects a mid-point penalty 𝛽int based
on whether the segmentation change, and runs the changepoint detection again on
[𝛽min, 𝛽int], and [𝛽int, 𝛽max], refining its search for the next penalty.

3. It repeats 2 iteratively until no further segmentations are found.

We can use CROPS to generate an elbow plot for selecting the appropriate penalty value in
changepoint detection. In Data Science and Machine Learning, elbow plots are graphs that
helps us choosing the appropiate value of a parameter, balancing between model complexity (in
our case number of changepoints) and goodness of fit (how tightly our model fits the data).

In case of CROPS, we can plot the number of changepoints against the penalty value from our
range. The curve typically shows a steep drop at first, as many changepoints are detected with
low penalties, then flattens as the penalty increases and fewer changepoints are added. The
elbow (hence its name) is the point where the rate of change in the number of changepoints
significantly slows down:

0 20 40 60 80

5
10

15
20

Number of Changepoints

P
en

al
ty

 V
al

ue

X

69

The elbow is a point of balance between model fit and complexity. As a rule of thumb, a good
choices of a penalty reside in picking either the penalty that generates the segmentation at the
elbow, or the one at the point immediately prior.

Going back to our neuroblastoma example above. We run CROPS for penalties [2, 40], and
we then generate the elbow plot:

out <- cpt.mean(data, method = "PELT", penalty = "CROPS", pen.value = c(2, 40))

plot(out,diagnostic=TRUE)
abline(v=3)

5 10 15 20

10
20

30
40

Number of Changepoints

P
en

al
ty

 V
al

ue

We can see that the elbow is at 4 changepoints, therefore this could suggest that a segmentation
with 4 changes might be the best!

This gives us:

cpts(out, 3)

[1] 3 17 52

plot(out, ncpts= 3, type="p", pch=16)

70

Time

da
ta

.s
et

.ts
(x

)

0 50 100 150

−
2

0
2

4

4.4 Exercises

4.4.1 Workshop 4

1. Looking at last week workshop exercise solution, which points in the OP recursion would
have been pruned by PELT? Check that the PELT pruning condition is true.

2. The model (not the cost!) for a single segment of a continuous change-in-slope is given
by:

𝑦𝑡 = 𝜏𝑖𝜃𝜏𝑖
+ 𝜃𝜏𝑖+1

(𝑡 − 𝜏𝑖) + 𝜖𝑡, for 𝑡 = 𝜏𝑖 + 1, … , 𝜏𝑖+1, 𝜖𝑡 ∼ 𝑁(0, 1) (4.1)

where 𝜃𝜏𝑖
represents the value of the slope at changepoint 𝜏𝑖 and 𝜙𝜏𝑖+1

is the value at the next
changepoint 𝜏𝑖+1. Note, in this example, for simplicity, we assume the intercept is set equal to
0.

This model is a variation from the one we had next week as it enforces continuity, e.g. the
value at the end of one segment, needs to be the at the next:

71

continuous discontinuous

0 50 100 150 200 250 0 50 100 150 200 250

−40

−20

0

t

si
gn

al

a. Can you identify the elements where there is dependency across segments? Once you’ve
done that, rewrite the model for one change by seting 𝜏𝑖 = 0. Would you be able to use
PELT pruning with this one?

b. Write down the continuous model from equation Equation 4.1, and the one from the
previous point for a case where you have two segments, 𝜃1, 𝜃2. Then have a look at the
model from week 2! What are the differences across the three models?

3. The PELT algorithm will only be able to deal with the discontinuous model. We will now
revisit the Simpsons dataset, fitting this multiple changes model. This can be achieved
via:

library(changepoint)

data <- cbind(y, 1, 1:length(y))
out <- cpt.reg(data, method="PELT")

cat("Our changepoint estimates:", cpts(out))

Our changepoint estimates: 176 359 363 585 589 708

plot(out, ylab="y", xlab="t", pch=16)
abline(v = cpts(out), col = "red")

72

0 200 400 600

4
5

6
7

8

t

y

Comment this segmentation. In which way we improved from the segmentation in week 2?
What would you change?

4.4.2 Lab 4

In this lab we will test changepoint algorithms over some artificial data. Each sequence will
have one of the following Gaussian change-in-mean patterns:

73

The code below will generate 400 sequences, which will be stored in a list called full_seqs.
Every 100 sequences you will have a different change-pattern, across the four different change
patterns.

library(tidyverse)

generate_signal <- function(n, pattern = c("none", "up", "updown", "rand1"), nbSeg = 8, jumpSize = 1) {
type <- match.arg(pattern)

if (type == "rand1") {
set.seed(42)
rand1CP <- rpois(nbSeg, lambda = 10)
r1 <- pmax(round(rand1CP * n / sum(rand1CP)), 1)
s <- sum(r1)

Adjust r1 to match sum to n
r1 <- if (s > n) {
while (sum(r1) > n) r1[which(r1 > 1)[sample(1:length(which(r1 > 1)), 1)]] <- r1[which(r1 > 1)[sample(1:length(which(r1 > 1)), 1)]] - 1
r1

} else {
sample(rep(seq_along(r1), n - s)) %>% table() %>% as.numeric() %>% `+`(r1)

}

set.seed(43)
rand1Jump <- runif(nbSeg, min = 0.5, max = 1) * sample(c(-1, 1), nbSeg, replace = TRUE)

}

Generate scenarios
switch(

type,
none = rep(0, n),
up = rep(seq(0, nbSeg - 1) * jumpSize, each = n / nbSeg),
updown = rep((seq(0, nbSeg - 1) %% 2) * jumpSize, each = n / nbSeg),
rand1 = map2(rand1Jump, r1, ~rep(.x * jumpSize, .y)) %>% unlist()

)
}

sims <- expand_grid(pattern = c("none", "up", "updown", "rand1"), rep = 1:100)

full_seqs <- pmap(sims, \(pattern, rep) {
mu <- generate_signal(1e4, pattern)
set.seed(rep)
y <- mu + rnorm(length(mu))

74

cps <- which(diff(mu) != 0)
return(list(y = y, mu = mu, cps = cps, pattern = pattern))
})

each component of the list describes a sequence:
summary(full_seqs[[1]])

Length Class Mode
y 10000 -none- numeric
mu 10000 -none- numeric
cps 0 -none- numeric
pattern 1 -none- character

1. Plot four sample sequences, each with a different change pattern, with superimposed
signals. You should replicate the plot above.

2. Install the changepoint package. By researching ?cpt.mean, learn about the change in
mean function. Run the PELT algorithm for change in mean on the four sequences you
picked above, with MBIC penalty.

3. Compare, in a simulation study, across the four different scenarios, performances of:

a. Binary Segmentation, with AIC and BIC penalty

b. PELT, with AIC and BIC penalty

You will need to compare performances in term of Mean Square Error of the fitted signal
MSE = ||𝜇1∶𝑛 − ̂𝜇1∶𝑛||22. A function has been already coded for you below:

mse_loss <- function(mu_true, mu_hat) {
return(sum((mu_true - mu_hat) ^ 2))

}

Report results by scenario and algorithm.

NOTE: You will be able to access parameters estimates via the function param.est(). To
get ̂𝜇1∶𝑛, necessary for the MSE computation above, we can use:

results <- # cpt.mean output here
rep(param.est(result)$mean, times = diff(c(0, cp_est, length(y))))

75

5 Working with Real Data

In practice, working with real-world data presents various challenges that can complicate
our analyses. Unlike idealised examples, real data often contain noise, outliers, and other
irregularities that can impair the accuracy of the segmentations we aim to generate. The
assumptions we make in our models may not hold up well, and this can lead to poor estimates
of changepoints. To tackle these issues, it is important to either use robust methods, or consider
carefully how we handle the estimation of key parameters within our changepoint detection
models.

5.1 Assessing the model fit

5.1.1 Assessing Residuals from a Changepoint Model: A Guide for
Undergraduate Mathematics

When dealing with real-world data and changepoint models, it’s essential to evaluate how well
the model fits the data. Apart from the techniques we saw last week, where we can use an
elbow plot and visual inspection to assess a segmentation, this evaluation is often done by
examining the residuals – the differences between the observed data points and the values
predicted by the model. If the residuals exhibit certain patterns, it may indicate that the
model is not capturing all the underlying structure of the data, or that assumptions about the
error distribution are violated.

This section introduces three key diagnostic tools for assessing the residuals from a changepoint
model: the histogram of residuals, the normal Q-Q plot, and the residuals vs. fitted
values plot. These tools help assess whether the assumptions of the model (such as normality
and homoscedasticity) hold.

As an example, we will run diagnostics on the following example:

76

−2

0

2

4

0 200 400 600
x

y

On which PELT returns the segmentation:

−2

0

2

4

0 200 400 600
x

y

5.1.1.1 1. Histogram of the Residuals

The histogram of the residuals is a simple but effective tool for visualizing the distribution of
residuals. The histogram checks whether the residuals are approximately normally distributed.
You should see a bell-shaped histogram centered around zero, indicating that the residuals are
symmetrically distributed around the mean with no significant skewness or heavy tails.

77

hist(residuals(out), main = "Histogram of the residuals")

Histogram of the residuals

residuals(out)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
50

10
0

15
0

• What to Watch for:

– Skewness: If the histogram is not symmetric, it could indicate skewness in the
residuals, suggesting that the model may not fully capture the data’s structure.

– Outliers: Large bars far from zero indicate extreme residuals, which could be out-
liers.

– Heavy or light tails: If the histogram shows long tails, it may suggest that the data
contains more extreme values than expected under the assumption of normally
distributed errors.

5.1.1.2 2. Normal Q-Q Plot

The normal quantile-quantile (Q-Q) plot compares the distribution of the residuals to a the-
oretical normal distribution. The idea is to see if the residuals deviate significantly from the
straight line that would indicate normality. Points should fall along a straight diagonal line,
indicating that the residuals closely follow a normal distribution.

qqnorm(residuals(out), main = "Normal Q-Q Plot of the Residuals")
qqline(residuals(out), col = "red")

78

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Normal Q−Q Plot of the Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

• What to Watch for:

– Deviations from the line: Systematic deviations suggest non-normality. For
instance, if points deviate upwards or downwards at the tails of the plot, it might
indicate heavy tails (more extreme values than a normal distribution would predict)
or light tails (fewer extreme values).

– Outliers: Points far away from the line, especially at the ends, suggest outliers or
non-normality in the tails.

The Q-Q plot is a more precise method of checking normality than the histogram since it
directly compares the residuals to a normal distribution’s quantiles.

5.1.1.3 3. Residuals vs. Fitted Values Plot

Finally, this plot shows the residuals on the y-axis against the fitted values from the model
on the x-axis. It is particularly useful for checking if there are patterns in the residuals that
suggest issues with the model fit. We would like to see a random scatter of points around zero,
with no discernible pattern, and roughly equal spread across all fitted values. This suggests
the model has adequately captured the relationship between the variables.

plot(fitted(out), residuals(out), xlab = "fitted", ylab="residuals")

79

0.0 0.5 1.0 1.5 2.0 2.5

−
3

−
1

1
2

3

fitted

re
si

du
al

s

• What to Watch for:

– To observe cluster of points in the data is normal, as the fitted values are the
estimate of our signal. Maybe counter-intuitively, we need to look out for single ob-
servations alone! These could be segments which only have one or few observations
in it, which could be a sign of overfitting.

– Heteroscedasticity (Non-constant variance): If the residuals’ spread increases or
decreases as the fitted values increase, it may indicate heteroscedasticity, which
violates one of the key assumptions of many models (constant variance of residuals).
If you observe heteroschedasticity only in one of the clusters, it might mean that
we are underestimating the number of the changes!

5.1.2 Example: violating heteroschedasticity:

Let’s take the data from before, and add increase the variance in one of the segments:

80

−10

−5

0

5

10

15

0 200 400 600
x

y

A simple PELT change-in-mean fit gives us the segmentation:

−10

−5

0

5

10

15

0 200 400 600
x

y

With the diagnostics:

81

Histogram of the residuals

residuals(out)

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
50

15
0

25
0

−3 −2 −1 0 1 2 3

−
4

0
2

4

Normal Q−Q Plot of the Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

82

−10 −5 0 5 10 15

−
4

0
2

4

fitted

re
si

du
al

s

We can clearly see from the vertical lines that we have an oversegmentation in the third
segment. The histogram and Q-Q plot both show some signs of deviations from a strict normal
distribution, especially in the tails, which might be due to the presence of heteroscedasticity
in the data. However, the residuals vs. fitted values plot provides the strongest evidence of
overfitting due to heteroscedasticity, showing that the variance of the residuals is not constant
and increases at the extremes.

5.2 Estimating Other Known Parameters

Let’s revisit the classic problem of detecting a change in mean. One of the key assumptions
we’ve relied on so far is that the variance, 𝜎2, is fixed, and known. Specifically, we used the
following cost function in our models:

ℒ(𝑦𝑠∶𝑡) = 1
2𝜎2

𝑡
∑
𝑖=𝑠

(𝑦𝑖 − ̄𝑦𝑠∶𝑡)
2

In our examples, we’ve typically set 𝜎2 = 1. However, this assumption is often unrealistic
when working with real data. When the true value of 𝜎2 is unknown or incorrectly specified,
the results of changepoint detection can be significantly affected.

• If we underestimate the variance by choosing a value for 𝜎2 that is too small, the change-
point detection algorithm may overlook real changes in the data, resulting in fewer
detected changepoints.

• Conversely, if we overestimate the variance with a value that is too high, the algorithm
may detect too many changes, identifying noise as changepoints.

83

5.2.1 Neuroblastoma Example: The Impact of Mis-specified Variance

Consider the neuroblastoma dataset as an example. If we run a changepoint detection method
like PELT or BS on this data without any pre-processing, we might observe that the algorithm
does not detect any changes at all:

−0.5

0.0

0.5

0 50 100 150 200
Time

y

summary(out_op)

Created Using changepoint version 2.3
Changepoint type : Change in mean
Method of analysis : PELT
Test Statistic : Normal
Type of penalty : MBIC with value, 16.36596
Minimum Segment Length : 1
Maximum no. of cpts : Inf
Changepoint Locations :

In this example, PELT fails to detect any changes because the scale of the data suggests a
lower variance than expected, affecting the algorithm’s sensitivity to changes.

84

5.2.2 Addressing Mis-specified Variance with Robust Estimators

One problem with estimating the variance in the change-in-mean scenario, is that depending
on the size of the changes, these can skew your estimate…

One way to solve the issue of this, is that, on the assumption that the data is i.i.d. Gaussian,
looking at the lag-1 differences 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 ∀ 𝑡 = 2, … , 𝑛:

qplot(x = 1:(n-1), y = diff(y)) + theme_minimal()

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

−0.50

−0.25

0.00

0.25

0.50

0.75

0 50 100 150 200
1:(n − 1)

di
ff(

y)

And compute the sample variance across all these differences as an estimator for our sigma
square: �̂�2 = ̄𝑆(𝑧1∶𝑛). However, we have not fixed our problem… yet!

What happens exactly at 𝑡 = 𝜏 + 1? Well, across these observations, our 𝑧𝜏+1 appears as an
outlier (why?). This can still skew our estimate of the variance.

A solution, is to use robust estimators of the variance. A common choice is the Median
Absolute Deviation (MAD), which is less sensitive to outliers and can provide a more reliable
estimate of ̄𝑆 in our case.

The formula for MAD is given by:

MAD = median(|𝑧𝑖 − median(𝑧1∶𝑛)|)

85

This estimator computes the median of the absolute deviations from the median of the data.

However, for asymptotical consistency, to fully convert MAD into a robust variance estimate,
we can use:

�̂�MAD = 1.4826 × MAD

This scaling factor ensures that 𝜎MAD provides an approximately unbiased estimate of the
standard deviation under the assumption of normally distributed data.

We then can divide our observations by this value to obtain ready-to-analyse observations. Go
back and check the scale of the data in the segmentations in week 3!

While this trick provides a solution for handling variance estimation in the change-in-mean
problem, more sophisticated models may require the estimation of additional parameters. And
more advanced techniques are needed to ensure that all relevant parameters are accurately
estimated (this is very much an open are of research)!

5.3 Non-Parametric Models

A alternative approach for detecting changes in real data, especially when we don’t want to
make specific parametric assumptions, is to use a non-parametric cost function. This method
allows us to detect general changes in the distribution of the data, not just changes in the
mean or variance. One such approach is the Non-Parametric PELT (NP-PELT) method,
which focuses on detecting any changes in the underlying distribution of the data.

For example, let us have a look at one of the sequences from the Yahoo! Webscope dataset
ydata-labeled-time-series-anomalies-v1_0 [http://labs.yahoo.com/Academic_Relations]:

A1 <- read_csv("extra/A1_yahoo_bench.csv")

Rows: 1427 Columns: 3
-- Column specification --
Delimiter: ","
dbl (3): timestamp, value, is_anomaly

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

86

ggplot(A1, aes(x = timestamp, y = value)) +
geom_vline(xintercept = which(A1$is_anomaly == 1), alpha = .3, col = "red") +
geom_point() +
theme_minimal()

0

250

500

750

1000

0 500 1000
timestamp

va
lu

e

Following Haynes, Fearnhead, and Eckley (2017), we introduce the NP-PELT approach. Let
𝐹𝑖∶𝑛(𝑞) denote the unknown cumulative distribution function (CDF) for the segment 𝑦1∶𝑛,
where 𝑛 indexes the data points. Similarly, let ̂𝐹1∶𝑛(𝑞) be the empirical CDF, which provides
an estimate of the true distribution over the segment. The empirical CDF is given by:

̂𝐹1∶𝑛(𝑞) = 1
𝑛 {

𝑛
∑
𝑗=1

𝕀(𝑦𝑗 < 𝑞) + 0.5 × 𝕀(𝑦𝑗 = 𝑞)} .

Here, 𝕀(𝑦𝑗 < 𝑞) is an indicator function that equals 1 if 𝑦𝑗 < 𝑞 and 0 otherwise, and the term
0.5 × 𝕀(𝑦𝑗 = 𝑞) handles cases where 𝑦𝑗 equals 𝑞.

Under the assumption that the data are independent, the empirical CDF ̂𝐹1∶𝑛(𝑞) follows a
Binomial distribution. Specifically, for any quantile 𝑞, we can write:

𝑛 ̂𝐹1∶𝑛(𝑞) ∼ Binom(𝑛, 𝐹1∶𝑛(𝑞)).

This means that the number of observations 𝑦𝑗 less than or equal to 𝑞 follows a Binomial
distribution, with 𝑛 trials and success probability equal to the true CDF value 𝐹1∶𝑛(𝑞) at 𝑞.

87

Using this Binomial approximation, we can derive the log-likelihood of a segment of data
𝑦𝜏1+1∶𝜏2

, where 𝜏1 and 𝜏2 are the changepoints marking the beginning and end of the segment,
respectively. The log-likelihood is expressed as:

ℒ(𝑦𝜏1+1∶𝜏2
; 𝑞) = (𝜏2 − 𝜏1) [̂𝐹𝜏1+1∶𝜏2

(𝑞) log(̂𝐹𝜏1+1∶𝜏2
(𝑞)) − (1 − ̂𝐹𝜏1+1∶𝜏2

(𝑞)) log(1 − ̂𝐹𝜏1+1∶𝜏2
(𝑞))] .

This cost function compares the empirical CDF of at the right and at the left of this data
points, for all the points:

1. Pre−change 2. Post−change

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

0.00

0.25

0.50

0.75

1.00

y

F
n(y

)

In practice, NP-PELT on the previous sequence gives the following:

library(changepoint.np)

y <- A1$value

cpt.np(y, penalty = "Manual", pen.value = 25 * log(length(y))) |> plot(ylab = "y")

88

Time

y

0 200 400 600 800 1000 1200 1400

0
40

0
80

0

5.4 Exercises

5.4.1 Workshop exercises

Provide an interpretation of the residuals diagnostics from the Simpsons dataset:

Histogram of the residuals

residuals(out)

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

0
20

0
30

0

89

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Normal Q−Q Plot of the Residuals

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

4.5 5.0 5.5 6.0 6.5 7.0 7.5

−
3

−
1

1
2

3

fitted

re
si

du
al

s

90

References

Baranowski, Rafal, Yining Chen, and Piotr Fryzlewicz. 2019. “Narrowest-over-Threshold
Detection of Multiple Change Points and Change-Point-Like Features.” Journal of the
Royal Statistical Society Series B: Statistical Methodology 81 (3): 649–72.

Bown, Jonathan. 2023. “Simpsons Episodes & Ratings (1989-Present).” https://www.kaggle
.com/datasets/jonbown/simpsons-episodes-2016?resource=download.

Fryzlewicz, Piotr. 2014. “Wild binary segmentation for multiple change-point detection.”
Annals of Statistics 42: 2243–81.

Haynes, Kaylea, Idris A Eckley, and Paul Fearnhead. 2017. “Computationally Efficient
Changepoint Detection for a Range of Penalties.” Journal of Computational and Graphical
Statistics 26 (1): 134–43.

Haynes, Kaylea, Paul Fearnhead, and Idris A Eckley. 2017. “A Computationally Efficient
Nonparametric Approach for Changepoint Detection.” Statistics and Computing 27: 1293–
1305.

Jackson, Brad, Jeffrey Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis, E. Gwin, P.
Sangtrakulcharoen, L. Tan, and Tun Tsai. 2005. “An Algorithm for Optimal Partitioning
of Data on an Interval.” Signal Processing Letters, IEEE 12 (March): 105–8. https:
//doi.org/10.1109/LSP.2001.838216.

Killick, R., P. Fearnhead, and I. A. Eckley. 2012. “Optimal Detection of Changepoints with
a Linear Computational Cost.” Journal of the American Statistical Association 107 (500):
1590–98.

Yao, Yi-Ching, and Richard A Davis. 1986. “The Asymptotic Behavior of the Likelihood
Ratio Statistic for Testing a Shift in Mean in a Sequence of Independent Normal Variates.”
Sankhyā: The Indian Journal of Statistics, Series A, 339–53.

Zhang, Nancy R, and David O Siegmund. 2007. “A Modified Bayes Information Criterion with
Applications to the Analysis of Comparative Genomic Hybridization Data.” Biometrics 63
(1): 22–32.

91

https://www.kaggle.com/datasets/jonbown/simpsons-episodes-2016?resource=download
https://www.kaggle.com/datasets/jonbown/simpsons-episodes-2016?resource=download
https://doi.org/10.1109/LSP.2001.838216
https://doi.org/10.1109/LSP.2001.838216

	Preface
	Source files, and attributions

	An Introduction to Changepoint Detection
	Introduction to Time Series
	What is a time series?
	Properties of time series

	Introduction to changepoints
	Types of Changes in Time Series
	The biggest data challenge in changepoint detection

	Detecting one change in mean
	The CUSUM statistics
	Searching for all \taus
	Example
	Algorithmic Formulation of the CUSUM Statistic
	Example: a large sequence

	Exercises
	Code the CUSUM algorithm for a unknown change location, based on the pseudocode above.
	Lab 1

	Controlling the CUSUM and Other Models
	The asymptotic distribution of the CUSUM statistics
	Controlling the max of our cusums

	The Likelihood Ratio Test
	Example: Gaussian change-in-mean

	Towards More General Models
	Change-in-variance
	Change-in-slope
	Revisiting our Simpsons data (again!)

	Exercises
	Workshop 2
	Lab 2

	Multiple changepoints
	Introduction
	Real Example: Genomic Data and Neuroblastoma
	Towards multiple changes
	The cost of a segmentation
	The ``best'' segmentation

	Binary Segmentation
	Binary Segmentation in action

	Optimal Partitioning
	Optimal partitinioning in action
	Neuroblastoma example

	Exercises
	Workshop 3
	Lab 3

	PELT, WBS and Penalty choices
	Drawbacks of OP and BS
	Quality of the Segmentation
	Computational Complexity

	PELT and WBS
	PELT: an efficient solution to OP
	WBS: Improving on Binary Segmentation

	Penalty Selection
	Example in R: Comparing Penalties with PELT
	CROPS: running with multiple penalties

	Exercises
	Workshop 4
	Lab 4

	Working with Real Data
	Assessing the model fit
	Assessing Residuals from a Changepoint Model: A Guide for Undergraduate Mathematics
	Example: violating heteroschedasticity:

	Estimating Other Known Parameters
	Neuroblastoma Example: The Impact of Mis-specified Variance
	Addressing Mis-specified Variance with Robust Estimators

	Non-Parametric Models
	Exercises
	Workshop exercises

	References

