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Abstract

This dissertation explores associations between champions and the influ-
ence of team composition on match outcome in League of Legends, through
comprehensive data analysis and machine learning techniques. Utilising Riot
Games’ Application Programming Interface (API), a dataset comprising of
96,000 matches across various patches and player ranks was collected. Ex-
ploratory analysis revealed insights into champion popularity and win rates,
showing Yuumi had the lowest win rate of 37.955% within the Iron rank.
Association rule learning, using an Apriori algorithm, uncovered strategic
associations among champions. Notably, in lower ranks, the presence of
Caitlyn often implied the selection of Lux, a pattern not observed in higher
ranks. Furthermore, association rule learning identified champions perceived
as easier to play, such as Lux, compared to more complex champions such as
Kai’Sa and Vel’Koz. Clustering analysis, using both k-means and hierarchi-
cal methods, detected interchangeable usage of Fighter and Slayer classes,
with minimal impact on match outcomes. Logistic regression models under-
scored significant interactions between champion performance and player
rank, emphasising the importance of skill-based matchmaking. Overall, this
research enhances understanding of team compositions and match dynam-
ics in League of Legends, with implications for strategic decision-making
and game balance. It underscores the value of statistical methods in the
continuous evolution of the eSports industry.

1



Contents

1 Introduction 3
1.1 Aims of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Contextual Background: League of Legends 6
2.1 Objectives of the Game . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Categorising the Champions . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Statistics in League of Legends . . . . . . . . . . . . . . . . . . . . 8

3 Literature Review 9
3.1 Machine Learning Methods . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Association Rule Learning . . . . . . . . . . . . . . . . . . . 10
3.1.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . 13

4 Data Collection 14

5 Exploratory Analysis 17

6 Association Rule Learning 19
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Clustering 29
7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Exploring Optimal Cluster Number with the Elbow Method 31
7.1.3 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . 32

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . 36

8 Logistic Regression 37
8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.1.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . 39
8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

9 Discussion 42
9.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Implications and Applications . . . . . . . . . . . . . . . . . . . . . 44

10 Conclusion 45

11 Bibliography 47

A Champion Information Table 51
A.1 Explanation of Sub-Classes . . . . . . . . . . . . . . . . . . . . . . . 55

B Logistic Regression Model 8.3 Tables 56

2



1 Introduction

The world of competitive video gaming, also known as eSports, has seen a large
increase in popularity over the past decade with the global eSports market being
valued at $1.98 billion (USD) in 2023 as given by [Shewale, 2024]. With this surge
in interest, there has been an increasing need to understand the factors that con-
tribute to success in these games. One such factor that requires further exploration
is the composition of a team in role-based video games.

Role-based video games are a sub-genre of competitive games, where each player
assumes a specific role that contributes to the overall strategy of the team. These
roles can vary widely, from damage dealers and defenders to supporters. The com-
position of these roles within a team is believed to significantly impact the team’s
performance and outcomes in competitive matches. I hypothesise that certain
compositions may be more effective than others, and understanding these dynam-
ics could provide valuable insights for players, coaches, and game developers.

Some examples of role based competitive video games are League of Legends, DotA
2, Valorant, Overwatch2, and Rainbow Six Siege. This work will concentrate on
League of Legends due to the game’s widespread popularity, as well as my personal
familiarity with it, having devoted over 3,400 hours to gameplay since 2018. This
extensive experience provides me with a unique perspective and in-depth under-
standing of the game’s mechanics and strategies. Furthermore, the game has a
larger number of available characters in comparison to the others previously men-
tioned. For example, Valorant has 22 ‘agents’ and Overwatch2 has 40 ‘heroes’.
Since League of Legends has 165 ‘champions’, the game possesses a greater com-
plexity which makes for a more interesting statistical analysis. In addition, there
is a large amount of match data that is readily available online through both ex-
isting datasets and from the game’s web application programming interface (API).

League of Legends (LoL), developed by Riot Games, has attracted significant at-
tention in both the gaming community and academic research due to its strategic
depth and team-based gameplay. The game has steadily grown in popularity and
now has over 152 million monthly players as can be seen in Figure 1.1. In addi-
tion, it is a globally recognised eSports game with 3,781 teams registered. The
[eSports Charts, 2024] states, from November 2016 to today, the most profitable
League of Legends team is T1 from South Korea who have won $8,816,493 (USD),
demonstrating the significance of the game. Furthermore, even those who do not
play at a competitive level have an established interest in the game. This is evi-
denced by the fact that the League of Legends 2023 World Championship peaked
at 6.4 million viewers according to [Statista, 2024]. For a more in-depth explana-
tion of the game’s mechanics and objectives, refer to Section 2.
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Figure 1.1: Number of monthly players from [lolvvv, 2023].

1.1 Aims of Dissertation

This dissertation aims to identify associations among champions to uncover poten-
tially powerful team compositions and explore their impact on the game’s outcome.
I decided to concentrate on the ranked game mode, as it seemed to yield the most
representative results in terms of strategic decisions. Although the game is played
globally, the data was collected entirely from Europe for simplicity, assuming that
the play style would not significantly differ across regions. It is crucial to acknowl-
edge that these decisions introduced some limitations, which will be addressed in
Section 4.

There are several online sources that already give qualitative advice surrounding
selecting the best team composition. Although the majority of these are based
upon expert opinion, they do not utilise statistical methods. Furthermore, the
advice offered in these resources tends to be rather general and lacks specificity,
particularly when it comes to individual champions. The limited amount of exist-
ing websites that provide information for individually selected champions suggests
a potential area for further research and tool development in the field. For exam-
ple, the online blog by [Burton, 2023] was written four years ago when there were
only 145 champions. The blog emphasises that experience and knowledge play
a crucial role in selecting a good team composition and improving at League of
Legends. This suggests that understanding team compositions and their impacts
on gameplay is an essential aspect of mastering the game.
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Furthermore, numerous online resources are available to aid players in making
strategic decisions within the game. For instance, the website [OPGG, 2024]
provides recommendations for champions that are both weak against and strong
against a specified champion. It also allows users to look up specific players,
enabling them to analyse their personal statistics, identify their most frequently
played champions, and determine their win rates with those champions. This fea-
ture facilitates an individual analysis of a player’s preferred play style.

Similarly, [Mobalytics, 2024] provides information on champions that are weak
against and strong against a particular champion. However, it goes a step further
as you can select a champion that you wish to play and it will rank champions
based on how similar their play styles are in case the chosen champion is unavail-
able. This dissertation will later investigate the concept of similar play styles using
the classes explained in Section 2.2. The website also provides an overall difficulty
rating for each champion which it defines as “how hard they are to immediately
pick up and learn”. However, there is no definitive explanation on how this is
measured so it may be using data analysis, expert opinion or a combination. The
difficulty ratings can be particularly useful for less experienced players who are
still learning the game and its controls. Despite the wealth of information these
websites provide, they do not offer team composition recommendations based on
multiple champions. Instead, they focus on providing information for individually
selected champions.

The following Section 3 will review the literature surrounding various machine
learning methodologies, with a particular focus on association rule learning, clus-
tering, and logistic regression. Each subsection will provide an overview of the
method, possible algorithms, its applications and overarching limitations. Follow-
ing this, Section 4 will present the methodology for data collection. Section 5
will then present the initial exploratory analysis, aimed at validating assumptions
about the gathered data. Subsequent sections, namely 6, 7, and 8, will explain the
data analysis conducted utilising association rule learning, clustering, and logis-
tic regression, respectively. Each of these sections will be structured by starting
with the relevant methodology before presenting the results. Section 9 will then
discuss the findings and explore the implications of the results for the future of
competitive gaming. Lastly, Section 10 provides a comprehensive summary of the
key information and results, concluding the dissertation.

All analyses were conducted in the programming language R [R Core Team, 2023]
using version 4.3.2. Any results presented in this work shall be rounded to three
decimal places.
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2 Contextual Background: League of Legends

2.1 Objectives of the Game

League of Legends is a popular multiplayer online battle arena game, commonly
known as MOBA. The game mode focused on was the ranked solo/duo queue
which involves ten players who are divided into two teams of five. The players
compete on a map called “Summoner’s Rift”, as shown in Figure 2.1. The teams
are distinguished by colours: the blue team, whose base is located in the bottom
left corner, and the red team, whose base is in the top right corner.

Figure 2.1: Summoner’s Rift map from [League of Legends Wiki, 2024b].

Each player controls a unique character, referred to as a champion, which possesses
unique abilities and skills. The game is centred around five positions: Top, Jungle,
Mid, Bot, and Support. The Top player operates in the top lane, the Mid player
is in the middle lane, and the Bot and Support players are in the bottom lane.
The Jungle player roams the area between the lanes, providing assistance where
needed. Despite these positions, players are not strictly confined to their lanes and
can move between them to support their teammates.

The ultimate goal of the game is to traverse the map and destroy the opposing
team’s base. This objective can typically be accomplished within a time frame of
30 to 45 minutes. However, each base is fortified by a series of turrets and defended
by continuously spawning minions, posing a challenge to the attacking team.
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The results have certain constraints due to the exclusion of some game mechanics,
a measure taken to limit complexity. I will now outline these potential influenc-
ing factors. The game incorporates an economic system that enables players to
purchase items to enhance their champion’s attacks and abilities. This mechanic
significantly complicates the analysis due to the availability of over 150 different
items, with a maximum of six that can be purchased per player. Additionally, the
game features objectives such as elemental dragons, Rift Herald and Baron Nasher
that, when defeated, provide your team with additional attributes. Moreover, the
level of communication within a team can significantly impact the outcome. For
instance, strategies such as coordinating attacks, sharing information about en-
emy locations, and devising tactical plans can all offer a substantial advantage.
However, in higher ranks there is often more consistent communication patterns,
which might mitigate this effect compared to lower ranks, where communication
effectiveness can vary significantly among teams. This motivates conducting an
analysis stratified by ranks and subsequently focusing on those high ranks.

At the time of data collection, players could choose from 165 unique champions.
When selecting a team of five, this results in approximately 958 million poten-
tial team compositions. Therefore, strategies to reduce the number of choices
are highly beneficial. During champion selection, each player has the option to
ban a champion they prefer not to compete against, slightly reducing the options.
Hence, the most strategic choice may not always be available if it has been banned.
Teams alternate in selecting champions, allowing for informed decisions based on
the opposing team’s choices. Therefore, strategic choices may include choosing
champions that synergise well with the choices already made by your team or
counter the opposing team’s choices. To streamline the selection process, cham-
pions can be categorised in various ways which is explained in detail in Section 2.2.

It is important to note that when new players create an account in League of
Legends, they initially have access to a limited number of champions through the
free rotation system. Additional champions can be unlocked using Blue Essence,
an in-game currency earned through levelling up or participating in matches. This
progression system allows players to gradually expand their champion pool and
explore diverse gameplay options as they advance in the game.

In the ranked version of the game, players can ascend through ten different ranks
based on their match victories, serving as a measure of skill. These ranks, in
ascending order, are: Iron, Bronze, Silver, Gold, Platinum, Emerald, Diamond,
Master, Grandmaster, and Challenger. Additionally, these ranks undergo periodic
resets, often at the start of a new competitive season, to maintain the competi-
tiveness and integrity of the ranking system.
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2.2 Categorising the Champions

Although some champions are capable of playing multiple positions, they are still
able to be categorised in this way. Another way to categorise champions is by the
type of damage that they inflict. Some champions possess high Attack Damage
(AD), which can be effectively countered by items that boost armour or health.
Conversely, champions with high Ability Power (AP) can be countered by items
that provide high magic resistance. It is important to note that there are a number
of hybrid champions, which combine both AD and AP attributes.

Alternatively, champions can be classified into seven distinct classes. First, there
are 21 choices for the Controller class, which are champions that focus on crowd
control and are generally weak when alone. Second, the Fighter class has 31
choices and includes short-range champions that excel at both dealing and sur-
viving damage. Third, the Mage class, with 30 choices, comprises champions who
typically possess great reach and ability-based area of effect damage. Fourth, the
Marksman class has 21 choices and is made up of ranged champions who focus
on basic attacks. Fifth, the Slayer class, with 28 choices, includes highly mobile
champions that focus on burst damage. Sixth, the Specialist class has 14 choices
and consists of champions that do not fit into any of the other categories due to
their unique abilities. Finally, the Tank class has 20 choices and includes tough
melee champions that can survive a large amount of damage. The data analysis
will focus on both individual champions and classes. This is motivated by the lack
of academic research on statistical analysis with relation to League of Legends, as
highlighted in Section 2.3. The champions can also be split into the following sub
classes: Catchers, Enchanters, Juggernauts, Divers, Artillery, Burst, Battlemages,
Assassins, Skirmishers, Vanguards, Wardens, Marksman, and Specialists. How-
ever, this was not studied in this work.

A table containing all the champions in alphabetical order with their ID numbers,
class, sub-class and most popular position can be seen in Appendix A.

2.3 Statistics in League of Legends

This section will look into a specific source that has analysed match data to draw
conclusions about effective team compositions and its impact on game outcomes.
The composition of a team, including the specific champions selected and the
positions they play, is a critical factor in determining the outcome of a match.
In addition, the source highlights the importance of strategic diversity, champion
synergy, and counter-picking. Afterwards, a comprehensive overview of what is
currently known about the effects of team composition in League of Legends will
be presented to identify the gaps that this dissertation aims to address.
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The website [LoLTheory, 2024] provides insights into entire team compositions in
League of Legends. Users can input specific champions and subsequently receive
recommendations and win rates. This feature can be customised for different ranks,
although it groups the top four ranks together. The website also offers patch com-
parisons, which can be particularly useful for tracking how changes in the game
impact team compositions and their success rates. Notably, the website is updated
frequently, specifically every three hours when a new patch is released, and then
once a day thereafter. The data used by the website is sourced from Riot’s API,
similar to the approach used in this dissertation. The frequent updates and use of
official game data increase the reliability of this source of information for study-
ing the effects of team composition in League of Legends. Although, there is no
explanation of what methods are used on the data collected.

Overall, there is a lack of academic research done in this area with the majority of
the resources available providing no insight into their specific statistical methods.
A pivotal factor to consider is the dynamic nature of the game, characterised by
frequent updates. Consequently, these resources quickly become outdated, dimin-
ishing their relevance over time. This dissertation, therefore, seeks to delve deeper
into the concept of team composition, aiming to provide a more detailed definition.

3 Literature Review

3.1 Machine Learning Methods

This section provides a comprehensive overview of the existing research on ma-
chine learning methods and their applications. It helps to establish the foundation
for the current study and identify which methods may be applicable to my research.

Machine learning is a subset of artificial intelligence that involves the use of algo-
rithms and statistical models to enable computers to perform tasks without explicit
programming. There are two main types of machine learning: supervised and un-
supervised. In supervised machine learning, algorithms are trained on labelled
datasets that include tags describing each piece of data. As a result, these models
are often used for prediction and classification purposes. Whereas, unsupervised
machine learning uses unlabelled datasets to train algorithms. As discussed by
[Coursera Staff, 2024], unsupervised learning can help to identify patterns within
large, unlabelled datasets quickly and efficiently. Both types have significant ap-
plications in various fields of mathematics, including optimisation, statistics, and
data analysis.
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Several methods have been applied in mathematical research in both supervised
and unsupervised contexts. These include decision trees [Rokach and Maimon, 2014],
regression models [Freedman, 2009], neural networks [Bishop, 2006], clustering
[Cattell, 1943] and association rule learning [Agrawal et al., 1993]. Each method
has unique algorithms, applications, advantages, and limitations. These will be
covered in detail for association rule learning, clustering and logistic regression
models.

Machine learning has found various applications across the sports industry. For
example, in sports science, [Kipp et al., 2018] employed a Neural Network (NN)
to predict hip, knee, and ankle Net Joint Moments during a weightlifting exercise.
This has significant implications, as it enables the refinement of training programs
to enhance performance and mitigate injury risks. Moreover, machine learning
methodologies have been utilised for predictive analytics in sports, such as the de-
velopment of logistic regression models by [Prasetio and Harlili, 2016] to forecast
football match outcomes in the Barclays’ Premier League season. Over time ma-
chine learning techniques have also been extended into the eSports industry. The
case study by [Hodge et al., 2021] highlights the advantages of employing machine
learning for eSports analysis. One advantage is that using machine learning al-
gorithms can improve win prediction abilities in comparison to more traditional
methods.

Despite the extensive research into machine learning, there are still gaps in the
literature and limitations of the methods. For instance, the large computational
demands of some of the methods.

Overall, considering the objectives of this dissertation and the binary nature of the
data the following methods have been utilised: association rule learning (Section
6), clustering (Section 7) and logistic regression models (Section 8). Each section
will cover the methodology used and present the relevant results. Additionally, a
discussion can be found in Section 9, which will consolidate the key findings, discuss
their interconnections, and explore their implications for the game. For further
exploration of the literature underpinning these methods, refer to the subsequent
sections.

3.1.1 Association Rule Learning

Association rule learning is a rule-based unsupervised machine learning method for
discovering interesting relations or associations between variables in large databases.
As discussed by [Piatetsky-Shapiro, 1991] the method is intended to identify strong
rules discovered in databases using some measures of relevance, based on the con-
cepts of support and confidence.
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There are many algorithms that can be used to implement association rule learn-
ing. The main methodologies are summarised in Figure 3.1. As introduced by
[Agrawal and Srikant, 1994], there are three significant algorithms: Apriori, Apri-
oriTID, and Apriori hybrid. Apriori, a classic algorithm, iteratively generates
candidate itemsets and prunes those below the minimum support threshold to
mine frequent itemsets efficiently. AprioriTID, an extension of Apriori, directly
mines frequent itemsets from transaction identifier lists (TID-lists) without candi-
date generation, optimizing performance. Apriori hybrid combines the strengths
of both Apriori and AprioriTID algorithms. Additionally, FP-growth, as detailed
in [Han et al., 2000], offers an alternative approach for mining frequent itemsets
without candidate generation. It employs a compact data structure called the
FP-Tree to achieve efficient mining. To determine the most suitable algorithm
among these options, one must carefully consider the trade-off between accuracy
and computational demand.

Figure 3.1: Comparison of association rule learning algorithms from
[Kumbhare and Chobe, 2014].

Originally the method was proposed in [Agrawal et al., 1993] for discovering regu-
larities between products in large-scale transaction data recorded by supermarkets.
For example, a rule could indicate that if a customer buys both onions and pota-
toes, then they are likely to also buy hamburger meat. Nowadays, the method
is used to improve decision making in the applications such as disease diagnosis
[Nahar et al., 2013], building intelligent transportation systems [Yang et al., 2012],
and fraud detection [Metwally et al., 2005].

This paper [Garćıa et al., 2007] discusses the following limitations of the method:
discovering an excessive number of rules, many of which may not be relevant. This
issue can be addressed to some extent through rule filtering. Additionally, some
rules are difficult to understand and lack comprehensibility, particularly in large
rules with multiple items.
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3.1.2 Clustering

Clustering, also referred to as cluster analysis, is a form of unsupervised learning.
The goal is to group a collection of objects so that objects within the same group,
referred to as a cluster, exhibit more similarity to each other than to objects in
other groups. As discussed by [Estivill-Castro, 2002], the implementation of clus-
tering encompasses a range of algorithms, largely owing to the inherent ambiguity
surrounding the precise definition of a ‘cluster’.

Each of the following algorithms uses the idea of distance to measure the simi-
larity between two points, meaning that points with a small distance are more
similar. Typically distance is calculated using metrics like Euclidean or Manhat-
tan distance, which are formally defined in Section 7.1. Hierarchical clustering
as presented in [Nielsen, 2016] operates by forming a hierarchy of clusters, merg-
ing or splitting them based on proximity either using Euclidean or Manhattan
distance. K-means, as explained by [MacQueen, 1967], partitions data into K
clusters, where each point is assigned to the cluster with the closest mean. It uses
primarily Euclidean distance to measure dissimilarity and iteratively minimises
within-cluster variance. DBSCAN as proposed in [Ester et al., 1996], on the other
hand, identifies dense regions by grouping nearby points within a specified radius
(epsilon). Distance calculation, often employing Euclidean distance, helps discern
the density around each point, with regions meeting a minimum point threshold
forming clusters and isolated points treated as noise. Since these calculate distance
in distinct ways, the algorithms can potentially result in diverse cluster formations.
This diversity underscores the complexity and versatility of clustering algorithms
in data analysis.

Cluster analysis has a variety of applications. For example [Hodge et al., 2021]
used cluster analysis to find patterns in the behaviours of players in the games
Tera and Battlefield: Bad Company 2. This was then used to develop behavioural
based profiles of how people play these games. Therefore, clustering provides a
way to reduce the dimensionality of a dataset in order to find the most important
features, and locate patterns which are expressed in terms of user behaviour as a
function of these features, which can be acted upon to test and refine a game’s
design.

While clustering is a powerful analytical tool, it is not without its drawbacks. A
significant challenge is the manual specification of the cluster count, which can
greatly impact the outcome and is often unknown beforehand. Moreover, as high-
lighted in [Peña et al., 1999], clustering algorithms like the k-means algorithm,
being iterative techniques, are sensitive to initial starting conditions. Outliers
pose another challenge as they can drastically distort clustering results by either
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pulling the centroids or creating their own cluster. The issue of high-dimensional
data introduces further complications for clustering, such as the convergence of
point distances, visualisation difficulties, and the curse of dimensionality. Certain
methods necessitate numerous arbitrary decisions, like the selection of a linkage
method in hierarchical clustering, which can substantially alter the results.

Despite these challenges, clustering continues to be a beneficial tool when utilised
effectively. This involves a thorough understanding the assumptions of the clus-
tering algorithm, suitable data preprocessing, and result validation using various
techniques and metrics.

3.1.3 Logistic Regression

Logistic regression as explained by [James et al., 2013], a type of generalised linear
model (GLM), is utilised to model the probability of a binary response variable, Y ,
following a Bernoulli distribution. Consequently, the dependent variable exhibits
only two possible outcomes, commonly represented as ‘0’ and ‘1’, ‘Yes’ and ‘No’,
or ‘True’ and ‘False’, depending on the context. Employing a logit link function,
the model estimates the likelihood of these outcomes based on one or more in-
dependent variables, also known as predictor variables. These predictors may be
numerical or categorical, granting logistic regression the flexibility to accommo-
date various data types. One of its primary strengths lies in its ability to provide
probabilities and facilitate the classification of new data points, leveraging both
continuous and discrete measurements.

Logistic regression finds applications in diverse binary classification problems. For
example, it has been employed in predictive models during eSports matches, such
as DotA 2 by [Yang et al., 2016]. In this study, integrating in-game metrics (e.g.,
gold, experience, and deaths per minute) with pre-existing features (e.g., player
information and hero selection) achieved an impressive accuracy of up to 93.73%
in predicting outcomes by the 40th minute of the game.

However, logistic regression is not without limitations. The model assumes a lin-
ear relationship between the logit of the response and predictor variables, as well
as independence and identical distribution of errors. Consequently, results can
be inaccurate if these assumptions are violated. Moreover, logistic regression is
often sensitive to overfitting which [Hosmer and Lemeshow, 2000] claim is “typi-
cally characterised by unrealistically large estimated coefficients and/or estimated
standard errors”. This sensitivity can lead to poor generalisation performance, es-
pecially in high-dimensional datasets. Nevertheless, regularisation techniques can
mitigate overfitting by penalising excessive model complexity.
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Regularisation techniques such as Lasso (L1 regularisation, Least Absolute Shrink-
age and Selection Operator) and Ridge (L2 regularisation) are frequently utilised
to mitigate overfitting in logistic regression models. Lasso regularisation intro-
duces a penalty term to the logistic regression cost function, which coerces the
coefficient estimates toward zero, thereby facilitating feature selection by driving
certain coefficients to precisely zero. Conversely, Ridge regularisation penalises
large coefficients by augmenting the cost function with the squared magnitude of
coefficients, thus promoting smaller yet non-zero coefficient values. Formal defini-
tions of these techniques are given in Section 8.1.

To ensure the selection of the optimal model, various goodness-of-fit summary
measures can be used. In [Hosmer and Lemeshow, 2000] the main measures are
highlighted as the Pearson chi-square statistic, classification tables, and the area
under the Receiver Operating Characteristic (ROC) curve before suggesting their
own method of Hosmer-Lemeshow tests. These measures collectively aid in evalu-
ating a model’s performance and its ability to accurately predict the outcome.

4 Data Collection

As highlighted in Section 2.3, the frequent updates to the game render data quickly
outdated and potentially irrelevant. The data under consideration was gathered
during the period of League of Legends Patches 13.22 and 13.23. However, it is
important to note that the game has since been updated to Patch 14.9. This sig-
nifies that ten subsequent patches, each with their own modifications, have been
implemented since the data was originally collected. One feature of these patches
is that there has been two new champions added, making the total number now
167. For detailed information about the changes introduced in these patches, visit
the official website [Riot Games, 2024a] and navigate to the ‘Patch Notes’ section.

After reviewing various match data available online, the decision was made to
collect new data. The reasoning behind this was that the data available was
often outdated or did not include any background information regarding the col-
lection methods. Therefore, there was a large potential for bias that could not be
controlled. Hence, data was gathered using the online Application Programming
Interface (API) provided by the game developer, Riot Games. This was completed
using the following packages: httr, jsonlite, and tidyverse.

The API documentation [Riot Games, 2024b] outlines parameter constraints, such
as the requirement to select one out of ten available regions where the players are
located. The data was collected entirely from Europe West, under the assumption
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that player skills would be comparable across regions. Additionally, the API neces-
sitated the specification of the match type. The ‘ranked queue solo/duo 5v5’ was
chosen as it directly impacts player statistics. I hypothesised that players would
approach these matches with more seriousness compared to other types, leading to
results that are more reflective of the game’s mechanics rather than chance. The
API imposed rate limitations, allowing only 100 match requests every two min-
utes. Consequently, data collection spanned multiple weeks, encompassing two
patches. While, ideally, data from a single patch would have been preferable, this
was impractical due to the aforementioned constraints. However, it is worth not-
ing that Patch 13.23, being the penultimate patch of 2023, was relatively minor.
It introduced no new champions and only implemented slight balance adjustments.

Given that the data collection process extended over multiple weeks, there is a pos-
sibility that some players may have experienced changes in their ranks during this
period. Nonetheless, it is likely that the ranks of the majority of players remained
stable. Furthermore, since there had not been a recent reset of the ranks, it was
inferred that most players had maintained their current ranks for a considerable
duration. Additionally, the later analysis only considered the highest four ranks
which are most difficult to achieve so it is unlikely more than a few people would
have changed in or out of this rank.

To ensure a diverse dataset, stratified sampling was used across the ten ranks.
Within each rank, players were randomly selected and their Player Universally
Unique Identifiers (PUUIDs) were collected. The most recent match history from
Patches 13.22 and 13.23 was then retrieved for each player. Once the match lists
were generated, they were cross-verified to ensure there were no repeated matches
that could introduce bias into the sample. This process resulted in the collection
of 4000 matches for each rank, totalling 40,000 matches. While the raw data was
preserved, given its voluminous nature, only the most relevant and interesting as-
pects were chosen for further study. Hence for each match, the following data was
extracted: Match ID, PUUIDs of both teams, champions selected by each team,
bans chosen by each team, and the outcome of the match.

After gathering the data from 40,000 matches, the rank distribution was inspected.
The version utilised was the most recent one accessible in September 2023. As il-
lustrated in the Figure 4.1, the distribution maintains a consistent shape over time,
with only small deviations at any rank. To make the data more applicable to a
broader context, the decision was made to merge some of the ranks. The ranks
were grouped as follows: Iron, Bronze, Silver, Gold, Platinum/Emerald, and Dia-
mond/Master/Grandmaster/Challenger (henceforth referred to collectively as the
‘Top 4’). Despite Iron representing less than 8% of players, I chose to keep it as a
separate category because my experience suggests that many players at this rank

15



are newcomers to the game. Consequently, their decisions are often less informed
and exhibit greater variability. Conversely, the higher ranks predominantly consist
of highly committed players or professionals. This method of rank consolidation
simplified the analysis, as my objective was to explore differences between ranks
and dealing with 10 separate ranks would have been cumbersome.

Figure 4.1: Comparison of worldwide player percentages across ranks at data
collection and dissertation completion, using data from [Milella, 2024].

This consolidation, however, led to an uneven distribution of matches across the
groups. To rectify this, a second round of data collection was undertaken, employ-
ing the same methodology as before. This ensured that each rank group contained
16,000 matches, culminating in a comprehensive dataset of 96,000 matches. Al-
though I would have liked to accumulate further data, time constraints and API
software issues (specifically its occasional unavailability and the fact it was prone
to crashes) meant that this was not feasible.
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5 Exploratory Analysis

The exploratory analysis utilised the tidyverse and ggplot2 packages. Prepro-
cessing of the data was the initial step by transforming the dataset, originally
listing champions played, into a wide binary format. This format, explained in
[Wickham and Grolemund, 2017], refers to a data structure where each observa-
tion is represented by a single row, and each variable is stored in its own column.
This transformation resulted in 330 columns, each representing a champion’s pres-
ence in either Team 1 or Team 2 during a match. An additional column was
incorporated to denote the victory (1) or defeat (0) of Team 1.

A supplementary binary data frame was created to represent the presence of cham-
pion classes (as detailed in Section 2.2) in each match for both teams. This was
done to investigate whether the team composition of classes could potentially in-
fluence the match outcome.

The analysis began by conducting frequency counts for each champion to determine
their popularity, as shown in Table 5.1. Lux emerged as the most popular champion
at lower ranks, likely due to her ease of play. Additionally a limited number of
champions are available to new players, and Lux is frequently either in the free
rotation or easily acquirable. Conversely, Kai’Sa was the most popular champion
at higher ranks, attributed to her high-damage abilities despite being challenging
to play due to the skill shots required. Across all ranks, there is a range of least
popular champions. It is possible that less popular champions, such as Skarner,
may not be compatible with more recently released champions due to their limited
reworks since their release. For example, Skarner has had limited reworks since his
2011 release (Skarner has been reworked as of April 2nd, 2024). Overall, several
factors could contribute to this variation in champion popularity. These factors
include the inherent strengths of certain champions, ease of gameplay, versatility
in different positions, frequency of updates, and the limited selection of champions
available to new players until they unlock additional options.

Rank Most played Count Least played Count

Iron Lux 4681 Corki/Skarner 87

Bronze Lux 4472 Skarner 87

Silver Lux 4031 Corki 95

Gold Kai’Sa 3391 Rek’Sai 141

Platinum/ Emerald Kai’Sa 3586 Skarner 127

Top 4 Kai’Sa 4779 Corki 65

Table 5.1: Frequency counts of most and least played champions across different
ranks.
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To investigate the possibility of systematic biases in team assignments, win rates
were calculated for both teams. The results revealed Team 1 and Team 2 boasting
win rates of 49.26% and 50.74% respectively. This shows evidence that match out-
comes were more likely influenced by natural variations rather than the system’s
team labelling. Next, the overall win rate for each champion was determined, with
Nilah having the highest win rate of 53.222%, while Yuumi had the lowest win
rate of 43.253%. This suggests that certain champions may possess inherent ad-
vantages, indicating an expected lack of perfect balance in the game, as supported
by the updates to the game that subtly modify champions’ abilities.

Moreover, win rates were computed within each rank for every champion, as de-
picted in Table 5.2. Excluding the Top 4, a pattern emerges: as the rank increases,
the highest win rate decreases and the lowest win rate increases. This suggests
that as players hone their skills, the impact of individual champions diminishes.
However, this trend does not apply to the Top 4, implying that beyond a certain
skill level, the choice of champion regains significance. An intriguing observation is
that in the Iron rank, Corki, despite being one of the least popular champions (as
per Table 5.1), has the highest win rate. A potential explanation for this anomaly
could be that some seasoned players create new accounts for easier matchups.
Consequently, it’s plausible that the players opting for Corki are more skilled than
the average player at that rank, thereby inflating Corki’s win rate. On the other
hand, Yuumi’s low win rate aligns with the win rates calculated across all the ranks.

Rank Highest WR Champion Lowest WR Champion

Iron 60.920 Corki 37.955 Yuumi

Bronze 56.095 Maokai 37.5 Rek’Sai

Silver 57.543 Kassadin 40.272 Gragas

Gold 56.069 Janna 42.085 Elise

Platinum/ Emerald 55.690 Udyr 44.490 Katarina

Top 4 56.774 Vel’Koz 39.286 Shyvana

Table 5.2: Champions with the highest and lowest win rates across different ranks.

An investigation followed to determine if a champion’s class exerted a greater influ-
ence on win rates than the champions themselves. Figure 5.1 visually presents the
win rates across all ranks, showing consistent median values but slight variations
in interquartile ranges. The Controller class exhibited the smallest range at 0.009,
while the Specialist class had a value of 0.025. Additionally, a specific box plot
for the Top 4, depicted in Figure 5.1, revealed wider win rate ranges for each class
compared to the overall plot. Notably, the Specialist class exhibited the smallest
interquartile range at 0.021, while the Fighter class had the largest at 0.035. These
findings underscore the influence of a player’s rank on game outcomes.

18



Figure 5.1: Win rate box plots for classes.

6 Association Rule Learning

6.1 Methodology

Association rule learning operates on a rule-based system with the primary func-
tion of uncovering intriguing relationships between variables in extensive databases.
The rules that are generated from this process highlight the connections between
variables and provide a quantifiable measure of these connections’ strength.

Following the original definition by [Agrawal et al., 1993], I = {i1, i2, ..., in} is de-
fined as a set comprising n binary attributes. Hence each i, commonly referred
to as items, takes on either the value 1 or 0 (or equivalently true or false). Then
D = {t1, t2, ..., tm} is defined as a set of transactions, collectively referred to as a
database. Each transaction within D possesses a unique transaction ID and in-
cludes a subset of I. A rule is then formulated as X → Y where both antecedent
X and consequent Y are subsets of I. The statement can be read as if X then Y .
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In this dissertation, the dataset comprises 165 unique items (champions) and in-
cludes 16,000 transactions (matches) for each rank. A small scale example in
Table 6.1 is used to illustrate the concept of a rule. The set of all potential items
is denoted I = {Akali, Ekko,Gangplank,Morgana, Skarner}. The dataset con-
sists of 3 transactions, each representing a unique match. For example, Match1
can be represented as t1 = {Akali,Morgana, Skarner}. One possible rule is
{Morgana, Skarner} → {Akali}, indicating that if both Morgana and Skarner
are picked, then Akali is likely to be picked as well. This rule has an antecedent
of size 2 {Morgana, Skarner} and a consequent of size 1 {Akali}.

Akali Ekko Gangplank Morgana Skarner

Match1 TRUE FALSE FALSE TRUE TRUE

Match2 FALSE TRUE FALSE FALSE FALSE

Match3 TRUE FALSE TRUE TRUE TRUE

Table 6.1: Example of a small potential dataset.

The results were calculated using the arules [Hahsler et al., 2023] package. This
package offers both the Apriori and Eclat algorithms. The Apriori algorithm was
selected due to its satisfactory computational speed and ease of implementation
due to example code given by [Hahsler et al., 2005]. The algorithm also provides
updates on which stage of the process it is currently computing which is beneficial
for the debugging process.

The Apriori algorithm identifies frequent individual items in the database and
extends them to larger itemsets, provided these itemsets appear with sufficient
frequency. The method, depicted in Figure 6.1 uses a greedy algorithm which
[Black, 2005] defines as an algorithm which always takes the best immediate, or
local, solution while finding an answer. To understand the diagram the following
definitions are required:

Definition 6.1 (Support for Itemset). The support of an itemset X in a transac-
tion database D with m transactions is the proportion of transactions containing
X, denoted as:

supp(X) =
|{t ∈ D : X ⊆ t}|

m
.

Definition 6.2 (Minimum Support Threshold). The minimum support threshold
is the user-defined parameter indicating the minimum level of support required for
an itemset to be considered frequent.
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Definition 6.3 (Confidence). Confidence is the conditional probability that the
consequent of a rule occurs in a transaction given that the antecedent of the rule
occurs in the transaction. For a rule X → Y in a transaction database D, confi-
dence is calculated as:

conf(X → Y ) =
supp(X ∩ Y )

supp(X)
.

Definition 6.4 (Minimum Confidence Threshold). The minimum confidence thresh-
old is the user-defined parameter indicating the minimum level of confidence re-
quired for an association rule to be considered significant.

Definition 6.5 (Single Itemset). A single itemset is a set containing one item.

The process illustrated in Figure 6.1 involves an algorithm begins by setting min-
imum support values. It then forms single item subsets from all transactions and
prunes those that do not meet the minimum support. From the remaining subsets,
frequent itemsets are formed. This approach, often referred to as the “bottom-up”
approach, extends frequent subsets one item at a time, and the algorithm ceases
operation when no further successful extensions are found. After the frequent
itemsets have been found, the algorithm will generate association rules from these
frequent itemsets. These rules are added to the list of rules only if they meet the
minimum confidence, otherwise, they are eliminated.

Figure 6.1: Apriori algorithm flowchart.

The Apriori algorithm relies on the anti-monotonicity property of the support
measure. This property dictates that if an itemset is frequent, all its subsets must
also be frequent, and conversely, if an itemset is infrequent, all its supersets will be
infrequent. This characteristic significantly reduces the search space and enhances
the efficiency of the algorithm. Figure 6.2 provides an illustration of this principle.
To understand the diagram, the following definitions are required:
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Definition 6.6 (Infrequent Itemset). An itemset is considered infrequent if its
support is below the minimum support threshold. In other words, an itemset X is
infrequent if supp(X) < minimum support threshold.

Definition 6.7 (Superset). Given two sets A and B, B is called a superset of A
if every element of A is also an element of B. Formally, B is a superset of A if
A ⊆ B.

Figure 6.2: Illustration of support-based pruning from [Tan et al., 2005].

In Figure 6.2, the null denotes the empty set at the top. The solid lines represent
the potential ways to add different items to this set. Thus, the circles below the
empty set represents the five different items I = {a, b, c, d, e}. Adding another
item yields an itemset of size two. The itemset ab is infrequent, leading to the
pruning of all its supersets within the dotted line. Consequently, the largest pos-
sible itemset after support-based pruning will be of size 4, either acde or bcde.

The data was formatted appropriately during the exploratory analysis stage but a
modification was later made to ensure that the champion columns were coded as
factors. In addition, some of the rules required the labelling of Team 1 and Team
2 to be removed. The support metric, calculated using Definition 6.1, was set to
a minimum value of 0.01 in this study. This was due to the large number of pos-
sible combinations relative to the number of transactions. The confidence metric,
calculated using Definition 6.3, was set to a minimum value of 0.1. This was to
ensure that the rules generated were relevant. Once the rules were found, they
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were filtered in various ways to identify any of particular interest. For instance,
filters were applied to identify only those rules that contained the match outcome
within the set Y .

The results were analysed by interpreting the rules and assessing the quality of
the rules using both their support and confidence values. This was partially ac-
complished by ordering the rules in descending order of confidence.

The first type of rules examined in this study generated two sets of rules: one
for Team 1 and another for Team 2. The algorithm was applied twice, once with
the itemset defined as all champions in Team 1 and then with it defined as all
champions in Team 2. The dataset remained consistent, comprising all available
matches for both teams. This approach aimed to identify any differences between
the two teams and assess the impact of team labelling.

The distinction between Team 1 and Team 2 was then removed, effectively dou-
bling the size of the dataset. Each original match now contributed two rows:
one labelled as Team 1 and the other labelled as Team 2. This step allowed for
a broader analysis, considering each champion’s potential selection regardless of
team affiliation.

Next, the labelling of the two teams was reinstated to find rules across teams.
Consequently, the itemset encompassed all champions available to both teams, re-
sulting in a size of 330. This analysis aimed to predict enemy selections based on
teammates’ choices.

Afterwards, the outcome variable for Team 1 (win or lose) was incorporated into
the itemset. This addition aimed to evaluate how each team’s selections might
influence match outcomes.

In a later stage, a transformed dataset was utilised, categorising champions into
the seven classes outlined in Section 2.2. Each original match was transformed
into two rows, one for each team, resulting in a database of 32,000 matches. The
absence of team labelling in this dataset allowed for an exploration of class impact
on match outcomes.

6.2 Results

To further consider if there were any systematic differences between the labelling
of the two teams, rules for Team 1 and Team 2 were generated separately. This
gave the highly similar results shown in Table 6.2 where, as expected, there does
not appear to be any major differences between them teams.
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After finding this, it was investigated if there were any associations when the teams
were unlabelled. An example of this would be if one person chooses champion A
then it is likely that another person will choose champion B. The information from
both teams was used which resulted in a total of 32,000 transactions. This gave a
variety of different amounts of rules as seen in Table 6.4a. In Table 6.4b, you can
see the highest confidence and the highest support rule for each rank. There was
one rule “Caitlin → Lux” which was common across all ranks except the highest.
Therefore, implying if one person chose to play Caitlin then another player on that
team would choose to play Lux. This could allow the opposing team to select a
champion that is a counter to Lux in anticipation of her selection. However, both
the support and confidence values decreased for this rule as the ranks increased.
The highest confidence rule overall “Xayah → Rakan” was exclusively in the top
two ranks, with a confidence value of 0.302. This suggests that the champions
Xayah and Rakan synergise well together, though this synergy may depend on the
player’s skill level. The presence of matching ’skins,’ which are additional customi-
sations to their appearance, further supports this notion as it indicates that the
game designers expect these champions to be played together.

I then looked at rules that could suggest potential common counter picks when the
two teams were labelled. This gave a larger volume of rules than only considering
one team which can be seen in Table 6.5a. As before, the rules with the highest
confidence and support values can be seen in Table 6.5b. Some rules were common
across ranks while others only appeared in the top ranks. However, one interesting
thing to note is that all the champions present in these rules are primarily cate-
gorised as either Bot or Support champions. This suggests that the associations
are based on the two positions that have the most connected gameplay. It also
suggests that the other positions (Jungle, Mid and Top) may select independently
of these two positions.

Finally, it was rules where the teams were labelled and the outcome of the match
was included. The purpose of this was to investigate if there are stronger choices
for champions in general or if certain combinations of champions are beneficial
to the team. The number of rules in each rank is shown in Table 6.6a and the
rules with the highest confidence and support values are in Table 6.6b. In the Iron
rank, the rule “Team 1 Yuumi → Team 2 Wins” is supported by Yuumi having the
lowest win rate as seen previously in Table 5.2. Two reoccurring rules are “Team
1 Lux → Team 1 Wins” and “Team 1 Kai’Sa → Team 2 Wins”. These are the two
champions which were often present in the Table 5.1. However, it is noteworthy
that the Kai’Sa rule appears unexpected, considering her high number of games
played. One would anticipate that her presence would positively impact the team
she belongs to. These findings will be examined in greater detail in Section 9.1.
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In the association rule analysis, a notable trend emerged: the maximum confidence
value tended to rise with higher ranks. Most rules exhibiting high confidence were
concentrated within the Top 4. Acknowledging this pattern, the analysis redi-
rected its attention to the Top 4, offering a more precise depiction of the game
mechanics irrespective of skill level.

Upon closer examination of unlabelled team rules within the Top 4, I noticed that
all rules had size 1 antecedents and consequents. To further analyse this, champi-
ons that frequently appeared together were combined to make a new item. Among
the association rules for the Top 4, three rules stood out with confidence levels
exceeding 0.25 (as shown in Table 6.7a). These three pairs were then chosen to
be merged. For example, the two items {Xayah,Rakan} became a single item
{Xayah/Rakan}. Although several larger rules were identified (as depicted in
Table 6.7b), their confidence levels were relatively low, prompting it to not be
pursued further. This can be attributed to the vast number of possible combina-
tions, resulting in many teams having very low support values.

Given the minimal impact of individual champions, the analysis changed focus to
the seven classes of champions. My aim was to determine whether the combina-
tion of classes held more significance than the specific champions themselves. For
unlabelled teams, I examined if the selection of a class would suggest the choice of
another specific class. Furthermore, the match outcome was included to ascertain
if specific class combinations could lead to superior results. The analysis yielded
100 rules based on the classes. Unfortunately, all these rules only implied implica-
tions with set Y having a size of 1. Despite this, several intriguing rules emerged,
as depicted in Table 6.3.

From this second analysis, it emerged that the choice of a single champion could
impact the team’s chances of winning. Specifically, selecting a Mage champion was
associated with the highest confidence of securing a win, with a value of 0.506. On
the other hand, opting for a Fighter champion yielded the lowest confidence, with
a value of 0.490. The implications of this will be discussed within Section 9.1.

When composing a team consisting of a Controller, Mage, Marksman, and Tank,
the confidence levels for selecting a Fighter (0.363) or a Slayer (0.356) as the fi-
nal choice were notably similar. However, opting for a Slayer champion yielded a
slightly higher confidence value of 0.542 for a win, compared to the Fighter’s value
of 0.512. Potential explanations for this discrepancy are explored in Section 9.1.

In contrast, for a team composition of Fighter, Mage, Marksman and Slayer, there
was a significant difference in confidence levels when choosing between a Controller
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(0.571) and a Tank (0.266). Interestingly, despite this difference, the impact on
the team’s winning confidence levels was very similar, with the Tank yielding a
slightly higher value of 0.507 compared to the Controller’s value of 0.506. This
suggests that the choice between a Controller and a Tank does not significantly
affect the team’s chances of winning. The implications of this are discussed in
Section 9.1.

Rank
Team 1 Team 2

N.o. Rules Confidence N.o. Rules Confidence

Iron 26 0.173 22 0.161

Bronze 20 0.176 17 0.159

Silver 12 0.162 13 0.167

Gold 8 0.269 5 0.148

Platinum/ Emerald 8 0.245 5 0.267

Top 4 48 0.306 45 0.298

Table 6.2: Number of rules and maximum confidence levels for Team 1 and 2.

Rule Support Confidence

Mage → Win 0.368 0.506

Fighter → Win 0.294 0.490

Controller,Mage,Marksman,Tank → Fighter 0.029 0.363

Controller,Mage,Marksman,Tank → Slayer 0.029 0.356

Controller,Mage,Marksman,Slayer,Tank → Win 0.016 0.542

Controller,Fighter,Mage,Marksman,Tank → Win 0.015 0.512

Fighter,Mage,Marksman,Slayer → Controller 0.073 0.571

Fighter,Mage,Marksman,Slayer → Tank 0.034 0.266

Fighter,Mage,Marksman,Slayer,Tank → Win 0.017 0.507

Controller,Fighter,Mage,Marksman,Slayer → Win 0.037 0.506

Table 6.3: Interesting rules for classes in the Top 4.
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Rank Number of Rules Maximum Confidence
Iron 26 0.167

Bronze 13 0.175
Silver 14 0.163
Gold 8 0.146

Platinum/Emerald 6 0.247
Top 4 46 0.302

(a) Number of rules and maximum confidence values.

Rank Rule Support Confidence

Iron
Caitlin → Lux 0.016 0.167

Miss Fortune → Lux 0.020 0.144

Bronze
Jinx → Lux 0.012 0.175

Caitlin → Lux 0.014 0.143

Silver
Jhin → Lux 0.012 0.163

Caitlin → Lux 0.014 0.139

Gold
Jhin → Lux 0.011 0.146

Caitlin → Lux 0.013 0.130

Platinum/Emerald
Xayah → Rakan 0.012 0.247
Caitlin → Lux 0.012 0.130

Top 4
Xayah → Rakan 0.019 0.302

Nautilus → Kai’Sa 0.026 0.268

(b) Interesting rules with their support and confidence values.

Table 6.4: Rules for the unlabelled teams across the ranks.

Rank Number of Rules Maximum Confidence
Iron 129 0.185

Bronze 88 0.183
Silver 67 0.178
Gold 28 0.133

Platinum/Emerald 30 0.157
Top 4 206 0.334

(a) Number of rules and maximum confidence values.

Rank Rule Support Confidence

Iron
Team 1 Ashe → Team 2 Lux 0.018 0.185

Team 1 Miss Fortune → Team 2 Lux 0.020 0.144

Bronze
Team 1 Morgana → Team 2 Lux 0.014 0.183

Team 1 Miss Fortune → Team 2 Lux 0.018 0.135

Silver
Team 1 Morgana → Team 2 Lux 0.012 0.178
Team 1 Caitlin → Team 2 Lux 0.014 0.132

Gold
Team 1 Jhin → Team 2 Caitlin 0.010 0.133
Team 1 Ezreal → Team 2 Caitlin 0.012 0.129

Platinum/Emerald
Team 1 Vayne → Team 2 Kai’Sa 0.011 0.157
Team 1 Ezreal → Team 2 Kai’Sa 0.015 0.138

Top 4
Team 1 Xayah → Team 2 Kai’Sa 0.022 0.334
Team 1 Ezreal → Team 2 Kai’Sa 0.025 0.208

(b) Interesting rules with their support and confidence values.

Table 6.5: Rules for the labelled teams across the ranks.
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Rank Number of Rules Maximum Confidence

Iron 367 0.651

Bronze 381 0.577

Silver 387 0.575

Gold 420 0.603

Platinum/Emerald 445 0.599

Top 4 425 0.532

(a) Number of rules and maximum confidence values.

Rank Rule Support Confidence

Iron
Team 1 Yuumi → Team 2 Wins 0.022 0.651
Team 1 Lux → Team 1 Wins 0.081 0.557

Bronze
Team 1 Zyra → Team 1 Wins 0.029 0.577
Team 1 Lux → Team 1 Wins 0.072 0.501

Silver
Team 1 Yuumi → Team 2 Wins 0.011 0.575
Team 1 Lux → Team 1 Wins 0.069 0.526

Gold
Team 1 Yuumi → Team 2 Wins 0.010 0.603
Team 1 Lux → Team 1 Wins 0.054 0.505

Platinum/Emerald
Team 1 Olaf → Team 1 Wins 0.017 0.599

Team 1 Kai’Sa → Team 2 Wins 0.079 0.525

Top 4
Team 1 Lissandra → Team 1 Wins 0.010 0.532
Team 1 Kai’Sa → Team 2 Wins 0.073 0.492

(b) Interesting rules with their support and confidence values.

Table 6.6: Rules for the labelled teams and outcomes across the ranks.

Rule Support Confidence

Xayah → Rakan 0.019 0.302

Karma → Ezreal 0.013 0.274

Nautilus → Kai’Sa 0.026 0.268

(a) Highest confidence rules.

Rule Support Confidence

Xayah/ Rakan → Syndra 0.002 0.121

Karma/ Ezreal → Orianna 0.002 0.119

Nautilus/ Kai’Sa → Orianna 0.003 0.117

Karma/ Ezreal → Syndra 0.002 0.117

Nautilus/ Kai’Sa → Syndra 0.003 0.106

(b) Rules after combining common pairs from highest confidence rules.

Table 6.7: Rules for the unlabelled teams in the Top 4.
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7 Clustering

7.1 Methodology

Both hierarchical and k-means clustering techniques were used on various binary
datasets. Both methods require establishing a measure of similarity or dissimilarity
between data points or clusters. Typically using distance metrics like Euclidean
or Manhattan distance as defined below. These definitions were adapted from
[Suhaeri et al., 2021] as the notation has been adjusted to better match this work.

Definition 7.1 (Euclidean Distance). The Euclidean distance between two points
p1 = (x1, x2, . . . , xn) and p2 = (y1, y2, . . . , yn) in an n-dimensional space is calcu-
lated as the square root of the sum of the squared differences between their corre-
sponding coordinates:

Euclidean distance =
√

(x1 − y1)2 + (x2 − y2)2 + . . .+ (xn − yn)2

Definition 7.2 (Manhattan Distance). The Manhattan distance between two points
p1 = (x1, x2, . . . , xn) and p2 = (y1, y2, . . . , yn) in a n-dimensional space is calculated
as the sum of the absolute differences of their corresponding coordinates:

Manhattan distance = |x1 − y1|+ |x2 − y2|+ . . .+ |xn − yn|

These distance measures provide a quantitative way to compare the dissimilarity
between data points or clusters. The choice of distance metric depends on the
characteristics of the data and the clustering objectives. For instance, Euclidean
distance is commonly used for continuous data, while Manhattan distance may be
preferred for data with categorical or ordinal attributes. Hence, when investigat-
ing the relationship between frequency played and win rate, as shown in Figure
7.3, using k-means clustering Euclidean distance was used. Whereas, Manhattan
distance was used for the other k-means clustering and all of hierarchical clustering.

7.1.1 K-means Clustering

K-means clustering is a machine learning algorithm used for unsupervised learning.
Unlike supervised learning, where algorithms are guided by labelled data, cluster-
ing attempts to uncover hidden structures and relationships. The primary aim
of clustering is to group data points into distinct clusters based on similarities in
their features, thereby revealing underlying patterns that may not be immediately
apparent. By iteratively partitioning the dataset into clusters and refining their
centroids to minimise within-cluster variance, k-means clustering tries to organise
complex data into meaningful groupings, facilitating insights and further analy-
sis. This method was chosen because of its computational efficiency and ability
to handle large datasets. In addition, the output is easy to interpret as it assigns
each data point to a single cluster making it useful for visualisation.
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K-Means clustering is a partitioning method that divides a set of n observations
into k non-overlapping clusters. Each observation belongs to the cluster with the
nearest mean, which serves as a prototype of the cluster. The objective of k-means
is to minimise the within-cluster variance (see Definition 7.3). Understanding the
workings of the algorithm is facilitated by referring to the provided pseudo-code
(Algorithm 1), which draws upon the methodology outlined in [MacKay, 2005].
The algorithm converges when there is no significant change in the cluster assign-
ments or the positions of the centroids between iterations, typically determined
by monitoring changes in the within-cluster variance or by setting a maximum
number of iterations.

Definition 7.3 (Within-cluster variance). Let X = {x1, x2, . . . , xn} be the set of n
observations, where each xi is a d-dimensional data point. Then the within-cluster
variance is

J =
k∑

i=1

∑
x∈Ci

ϕ(x, µi)

where:

• k is the number of clusters;

• Ci is the i-th cluster;

• µi is the centroid (mean) of the i-th cluster;

• ϕ(x, µi) is the distance measure.

Algorithm 1 K-means clustering

Require: Data points X = {x1, x2, ..., xn}, number of clusters k.
Ensure: Cluster centroids C = {µ1, µ2, ..., µk}.
1: Randomly initialise k centroids µ1, µ2, ..., µk.
2: repeat
3: for each data point xi do
4: Calculate the nearest centroid: µnearest = argminj dist(xi, µj).
5: Assign xi to the nearest centroid: xi → µnearest.
6: end for
7: for each centroid µj do
8: Update centroid: µj =

1
|Cj |

∑
xi∈Cj

xi, where Cj is the set of points assigned
to µj.

9: end for
10: until Convergence
11: return Cluster centroids C.

The results were completed using the following packages: plotly, factoextra,
cluster and tidyverse.
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7.1.2 Exploring Optimal Cluster Number with the Elbow Method

In the analysis, the elbow method was tested to determine the ideal number of
clusters. This method aids in identifying the point at which adding more clusters
ceases to significantly enhance the reduction of within-cluster variance. By sys-
tematically increasing the number of clusters and observing how the within-cluster
variance decreases, you seek the point where additional clusters yield diminishing
returns in variance reduction.

To construct an elbow plot, one plots the number of clusters (k) against their cor-
responding within-cluster variance. The plot typically exhibits a sharp decrease in
within-cluster variance as the number of clusters rises, followed by a more gradual
decline. The “elbow” point on this plot represents the optimal number of clusters,
as it signifies the juncture where the rate of variance reduction diminishes signifi-
cantly. An example of an elbow plot can be seen in Figure 7.1, where the optimal
number of clusters is 4.

Figure 7.1: Elbow plot with an optimal number of 4 clusters from [Bobbitt, 2022].
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7.1.3 Hierarchical Clustering

Hierarchical clustering is a data analysis technique that sorts data points into
clusters based on either Euclidean (Definition 7.1) or Manhattan (Definition 7.2)
distance. There are two main types of hierarchical clustering: agglomerative and
divisive, both of which can be seen in Figure 7.2. In agglomerative clustering,
also known as bottom-up clustering, each data point initially forms its own clus-
ter, and pairs of clusters are iteratively merged based on their similarity until all
points belong to a single large cluster. Algorithm 2 provides pseudocode for the
agglomerative clustering method, as this is the method used within the analysis.
Conversely, divisive clustering, or top-down clustering, starts with a single cluster
containing all data points and recursively splits it into smaller clusters until each
cluster contains only one data point.

Algorithm 2 Agglomerative Hierarchical Clustering

Require: Data points X = {x1, x2, ..., xn}
Ensure: Dendrogram representing hierarchical clustering
1: Initialise each data point as a separate cluster: C1, C2, ..., Cn

2: Compute the distance matrix D between all pairs of clusters using a chosen
distance metric

3: while more than one cluster remains do
4: Find the pair of clusters with the smallest distance: (p, q) = argmini,j Dij

5: Merge clusters Cp and Cq to form a new cluster Cpq

6: Update the distance matrix D to reflect the merging of clusters Cp and Cq

7: end while
8: return Dendrogram representing the hierarchical clustering

One critical aspect influencing the behaviour of hierarchical clustering algorithms is
the choice of linkage criterion, which determines how the distance between clusters
is computed. Common linkage criteria include single linkage, complete linkage,
average linkage, centroid linkage, and Ward’s linkage. Using [Jarman, 2020] as
starting point, these can be defined as:

Definition 7.4 (Single Linkage). The single linkage criterion defines the distance
between two clusters Ci and Cj as the shortest distance between any two points in
the clusters:

d(Ci, Cj) = min
x∈Ci,y∈Cj

dist(x, y).

Definition 7.5 (Complete Linkage). The complete linkage criterion defines the
distance between two clusters Ci and Cj as the maximum distance between any two
points in the clusters:

d(Ci, Cj) = max
x∈Ci,y∈Cj

dist(x, y).
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Definition 7.6 (Average Linkage). The average linkage criterion defines the dis-
tance between two clusters Ci and Cj as the average distance between each point
in one cluster to every point in the other cluster:

d(Ci, Cj) =
1

|Ci| · |Cj|
∑
x∈Ci

∑
y∈Cj

dist(x, y).

Definition 7.7 (Centroid Linkage). The centroid linkage criterion defines the
distance between two clusters Ci and Cj as the distance between their centroids
(means):

d(Ci, Cj) = dist(centroid(Ci), centroid(Cj)).

Definition 7.8 (Ward’s Linkage). Ward’s linkage is a variance-minimising ap-
proach where the distance between two clusters Ci and Cj is based on the increase
in variance resulting from merging them.

These different linkage criteria can lead to distinct cluster structures and may be
chosen based on the specific characteristics of the dataset or the objectives of the
analysis. Within this analysis, ward’s linkage was used because the data was bi-
nary.

One common way to represent the results of hierarchical clustering is through a
dendrogram, which is a tree-like diagram, where each node represents either a sin-
gle data point or a cluster of data points. An example dendrogram can be seen in
Figure 7.2. The structure of the dendrogram reflects the order in which clusters
were merged or divided during the clustering process. Interpreting the dendrogram
involves tracing the paths from the leaf nodes to the root node, which represents
the final, all-encompassing cluster. The height at which branches merge or split
corresponds to the level of dissimilarity at which these operations occur. Thus, the
structure of the dendrogram provides insights into the hierarchical organisation of
the data, revealing clusters at different levels of granularity.

A notable advantage of hierarchical clustering is its flexibility regarding the num-
ber of clusters. Once the dendrogram is constructed, slicing it horizontally defines
individual clusters at varying levels of granularity. This flexibility allows for the
exploration of sub-clusters and adjustments to the clustering granularity.

The reason for using hierarchical clustering is that it is useful for uncovering the
underlying structure of data and identifying outliers. The agglomerative approach
was used in this dissertation due to its computational efficiency, surpassing the
divisive method in terms of resource utilisation.

The analyses were conducted using the cluster and tidyverse packages. A total
of 15 clusters were chosen to strike a balance between granularity and cluster size,
aiming to uncover meaningful patterns while maintaining manageable cluster sizes.
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Figure 7.2: Agglomerative and divisive clustering example dendrogram from
[ClicData, 2020].

7.2 Results

7.2.1 K-means Clustering

The analysis began with clustering on champions based on their frequency and
win rate which can be seen in Figure 7.3. In cluster 2, there are champions that
are more frequent and seem to possess middling win rate, meaning they lost and
won similar amounts. Then cluster 1 denotes champions that were not played a
lot and seemed to lose when they were played. Interestingly, cluster 3 contained
champions that were not played that much but had a high win rate when they were.

Figure 7.3: K-means clustering on champions using win rate and frequency.
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The elbow plot in Figure 7.4 was examined, but there was no optimal number
identified using it. It suggested that around 3 or 4 would be appropriate. After
testing both, three clusters were chosen for Figure 7.3 as it provided the best visu-
alisation and logical output. Since there was little to be gained from the individual
champions, the focus shifted to the classes of champions instead.

Figure 7.4: Elbow plot for k-means clustering on champions.

The matches were used to cluster the different classes of champions, resulting in
Figure 7.5. A variety of different numbers of clusters were attempted; however, as
before, the elbow plot did not reveal anything useful, so it has not been included
here. Nonetheless, any attempt with more than four clusters did not converge, as
the clusters would change each time the algorithm was run. Across all 4 clusters,
there were similar outcomes for the team of approximately 0.47 to 0.5. Cluster 1
and 2 were similar except that cluster 1 had a Fighter but no Slayer, while cluster
2 had a Slayer but no Fighter. Cluster 3 and 4 were also similar except that cluster
3 had a Controller and cluster 4 had no Controller but a much larger emphasis on a
tank. Across all the 4 clusters the Specialist class was infrequent. However, as seen
in Table 7.1 Specialists are the least popular class of champion overall in the Top 4.

Class Controller Fighter Mage Marksman Slayer Specialist Tank
Percentage 66.884 59.969 72.647 79.338 66.125 26.378 46.419

Table 7.1: Percentage of matches in the Top 4 containing each class.
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Figure 7.5: K-means clustering of classes using matches.

7.2.2 Hierarchical Clustering

The initial approach involved applying hierarchical clustering on individual cham-
pions. However, this method was not pursued due to its high dimensionality, which
led to significant computational times and a lack of interpretability. Therefore, an
alternative approach was considered, which involved performing hierarchical clus-
tering on the different classes. This was done on unlabelled teams meaning that
the outcome was if the given team won. The results of the clustering can be seen
in Table 7.2.

After trying a range of choices for the number of clusters, it was decided that 15
would be an interesting number to study. Anymore than 15 would result in n (the
number of matches represented in each cluster) becoming too small and would
become more likely to be unrepresentative and lack generality. An interesting dis-
covery was made in relation to cluster 3, which demonstrated a good win rate of
0.780. Notably, the team associated with this cluster never included a Mage. It is
important to note that this was based on only 1571 matches. In contrast cluster
9, which contained 840 matches, was associated with a 0 win rate and never con-
tained a Mage or a Tank. In addition, it always a Controller, Marksman and Slayer.

Due to computational constraints, the analysis was only conducted on a subset of
16,000 matches. This constraint should be taken into account when interpreting
the results.
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Cluster Outcome Controller Fighter Mage Marksman Slayer Specialist Tank n
1 0.498 0.000 1.000 0.835 1.000 0.051 0.349 1.000 1118
2 0.466 0.992 0.996 0.000 0.867 0.031 0.530 0.487 517
3 0.780 0.930 0.493 0.000 0.688 0.922 0.358 0.388 1571
4 0.442 0.463 0.000 0.884 1.000 1.000 0.000 1.000 1327
5 0.495 1.000 0.000 1.000 1.000 0.837 0.347 0.000 1570
6 0.434 0.000 0.728 0.884 1.000 0.734 0.380 0.000 827
7 0.467 0.175 0.852 0.424 1.000 1.000 0.000 1.000 1367
8 0.468 1.000 1.000 1.000 1.000 0.000 0.201 0.248 1854
9 0.000 1.000 0.664 0.000 1.000 1.000 0.340 0.000 840
10 0.502 0.552 0.000 1.000 1.000 0.000 0.516 1.000 611
11 0.478 1.000 1.000 1.000 1.000 1.000 0.000 0.000 1183
12 0.458 0.374 0.969 1.000 0.000 0.610 0.202 0.858 893
13 0.504 0.810 0.000 1.000 0.000 0.899 0.357 0.515 844
14 0.393 0.000 0.156 0.486 1.000 1.000 1.000 1.000 430
15 0.462 1.000 1.000 0.971 0.000 0.659 0.229 0.000 1048

Table 7.2: Hierarchical clustering on the classes and outcome.

8 Logistic Regression

8.1 Methodology

Logistic regression is used for analysing the relationship between predictor vari-
ables and binary outcomes. This section will present the methodology for mod-
elling match outcomes. Multiple logistic regression models were formulated to
predict the probability of a team winning a match. To address potential overfit-
ting and enhance the model’s robustness, regularisation can be used:

Definition 8.1 (Lasso Regularisation). Lasso regularisation, or L1 regularisation,
constrains model coefficients by adding a penalty term to the optimisation objective.
In logistic regression, the lasso penalty term is defined as:

Lasso(β) = λ

p∑
j=1

|βj|

where β are the model coefficients, p is the number of predictors, and λ is the
regularisation parameter controlling penalty strength. The term |βj| denotes the
absolute value of coefficient βj. Lasso promotes sparsity by shrinking some coeffi-
cients to zero, facilitating feature selection. Higher λ values lead to more aggressive
coefficient shrinkage, balancing model complexity and accuracy.

Definition 8.2 (Ridge Regularisation). Ridge regularisation, or L2 regularisation,
mitigates overfitting in regression models by penalising large coefficients. In logistic
regression, the Ridge penalty term is:

Ridge(β) = λ

p∑
j=1

β2
j
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where β are model coefficients, p is the number of predictors, and λ controls
the penalty strength. Ridge encourages smaller but non-zero coefficients, reduc-
ing model complexity.

Within this analysis, lasso regularisation was chosen to try to reduce the high-
dimensionality of the data. For further details on the models’ equations and the
application of lasso regularisation, refer to Section 8.1.1.

In all the models, the following definitions will apply:

Definition 8.3 (Logit Function). The logit function, denoted by logit(p), is the
natural logarithm of the odds of success p in a binary event. It serves as a link
function in logistic regression, transforming the probability of success into a linear
combination of predictor variables:

logit(p) = ln

(
p

1− p

)
.

Definition 8.4 (Logistic Function). The logistic function, denoted by logistic(t),
is defined as the sigmoid function, which maps any real-valued input t to the range
(0, 1):

logistic(t) =
1

1 + e−t
.

Definition 8.5 (Maximum Likelihood Estimation (MLE)). Maximum Likelihood
Estimation (MLE) is a method to estimate the parameters of a statistical model by
maximising the likelihood function L(θ|X) given observed data X. It seeks to find
the parameter values θ that maximise L(θ|X), expressed as:

θ̂MLE = argmax
θ

L(θ|X),

where θ̂MLE is the maximum likelihood estimate of the parameters.

The models were fitted using maximum likelihood estimation and these packages:
tidyverse, caret, pROC, MASS and glmnet. To assess model performance, the data
was split into training and testing sets at a 7:3 ratio. Evaluation metrics includ-
ing specificity, sensitivity, and area under the Receiver Operating Characteristic
(ROC) curves were employed using the following definitions.

Definition 8.6 (Sensitivity). Sensitivity, or the true positive rate, measures the
proportion of actual positives correctly identified by the classifier:

Sensitivity =
TP

TP + FN

where TP and FN denote true positives and false negatives, respectively.
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Definition 8.7 (Specificity). Specificity, or the true negative rate, measures the
proportion of actual negatives correctly identified by the classifier:

Specificity =
TN

TN + FP

where TN and FP denote true negatives and false positives, respectively.

Definition 8.8 (AUC). The Area Under the Curve (AUC) of a ROC curve quan-
tifies the classifier’s ability to distinguish between classes:

AUC =

∫ 1

0

TPR(f) dFPR(f)

where TPR(f) and FPR(f) represent the true positive and false positive rates,
respectively, at a given decision threshold f .

The logistic regression coefficient β associated with a predictor X is the expected
change in log odds of having the outcome per unit change in X. So, when you
exponentiate this coefficient, it gives you the odds ratio, which represents the mul-
tiplicative change in the odds for a one-unit change in the predictor. To interpret
the models, the β coefficients were exponentiated to give the odds ratios for the
corresponding independent variables. In addition, p-values were calculated for the
odds ratios to see if any were of statistical significance.

8.1.1 Model Specification

The following are the models used within the analysis.

logit(p1) = β0 +

n1∑
i=1

β1ix1i +

n2∑
j=1

β2jx2j (8.1)

where logit(p1) describes the log odds of Team 1 winning a match. The model
comprises an intercept term β0 and indicator variables x1i, x2j representing the
presence of each “Champion” for both Team 1 and 2. The terms n1 and n2 denote
the number of champions available to each respective team. This model was also
used with lasso regularisation penalty term λ

∑p
j=1 |βj|.

logit(p) = β0 +
7∑

i=1

β1iy1i +
7∑

j=1

β2jy2j (8.2)

where logit(p) describes the log odds of winning a match. The model includes an
intercept term β0 and indicator variables y1i and y2j for the presence of a “Class”
for both Team 1 and 2. This model was also used with lasso regularisation penalty
term λ

∑p
j=1 |βj|. In addition, interaction terms between the classes of the two

teams were later added.
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logit(p) = β0 + β1x+
5∑

i=1

γizi +
5∑

i=1

5∑
j=1

δijxyi (8.3)

where logit(p) predicts the log odds of winning a match. The model includes an
intercept term β0, an indicator variable for the presence of “Champion” (β1x),
a categorical variable “Rank” (γiyi), and interaction terms between “Champion”
and each “Rank” category (δijxyi).

8.2 Results

A summary of how well each model performed, as well as the largest positive and
negative predictors within the model can be seen in Table 8.1.

Model Negative
Impact

Estimate Positive
Impact

Estimate Sensitivity Specificity AUC

Model 8.1 Team 2
Vel’Koz

0.320 Team 1
Yorick

3.953 0.643 0.405 0.535

Model 8.1
LASSO

Team 1
Trundle

0.379 Team 2
Wukong

1.656 0.612 0.448 0.543

Model 8.2 Team 2
Mage

0.868 Team 1
Tank

1.140 0.848 0.190 0.531

Model 8.2
LASSO

Team 2
Mage

0.880 Team 1
Controller

1.128 0.861 0.169 0.529

Model 8.2
interactions

Team 2
Specialist

0.657 Team 1
Controller

1.824 0.717 0.314 0.519

Table 8.1: Logistic regression model comparison.

The data was divided into a training set and a test set to evaluate the prediction
accuracy of my model. Using a cutoff point of 0.5 for my predictions, all the mod-
els gave similar AUC values of 0.519-0.543. These results indicate that the models
are slightly better than random guessing, but none are them are exceptional pre-
diction tools. An example of a ROC curve (from Model 8.1) can be seen in Figure
8.1. I had attempted to fit Model 8.1 to include interaction terms between the
champions, but this was too computationally demanding for my laptop.

Consequently, logistic regression models were not utilised as prediction tools.
Hence, the logistic function was not utilised to calculate the probability of a spe-
cific team composition winning the match. Instead, logistic regression was used to
verify the underlying assumptions and conclusions derived from other methods.

Therefore, Model 8.3 was applied individually to each of the 165 champions to in-
vestigate if the assumption that the rank of the player does have an impact on the
outcome. In Table 8.2, you can see for each of the chosen champions (those who
had appeared multiple times in previous analyses such as win rates and associa-
tion rules) which terms were significant and at what significance level. In addition,
you can see the corresponding odds estimate for how they effect the outcome of
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the match. For example, in the Lux model the only term that was significant
was the interaction term between the champion Lux and the rank Iron. This was
significant at the 0.1 level and has a corresponding odds estimate of 1.079. Hence,
playing Lux at the Iron rank increases your teams chances of winning. This result
is discussed in more detail in Section 9.1.

Appendix B gives a more detailed breakdown of the estimates and p-values for
each of the champions in Table 8.2.

Figure 8.1: ROC curve for Model 8.1.

Champion Term Significant at Odds Estimate

Lux Lux × Iron 0.1 1.079

Kai’Sa Kai’Sa × Platinum/ Emerald 0.1 0.905

Corki Corki × Iron 0.05 1.804

Yuumi

Yuumi 0.001 0.747
Yuumi × Iron 0.05 0.807
Yuumi × Silver 0.05 1.275

Yuumi × Platinum/ Emerald 0.1 1.246

Vel’Koz Vel’Koz × Top 4 0.1 1.305

Shyvana Shyvana × Top 4 0.05 0.605

Table 8.2: Significant terms for selected champions from Model 8.3.
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9 Discussion

9.1 Interpretation of Results

As depicted in Table 5.1, Kai’Sa emerges as the most popular champion among
high ranks, in contrast to Lux, who was most popular in lower ranks. This discrep-
ancy suggests that Lux’s perceived simplicity might make her a preferred choice
for less experienced players. Consequently, Lux appears frequently in association
rules without team labels (Table 6.4), except in higher ranks. Moreover, the inter-
action between Lux and Iron in Table 8.2 suggests her suitability for lower ranks
but vulnerability to counters in higher ones.

Conversely, despite their low pick rates across ranks, champions like Corki and
Skarner demonstrate unique strategic potentials. Both these champions possess
unique attacking patterns that can be countered by many champions, hence they
may only be reliable in certain circumstances. For instance, Corki’s dispropor-
tionately high win rate in Iron (Table 5.2) might indicate specialised usage or the
phenomenon of experienced players creating new accounts. However, this under-
scores a limitation: data from lower ranks may be skewed by players who actually
belong in higher tiers, emphasising the need to focus analysis on the Top 4 for
more reliable insights.

An intriguing insight from association rules Table 6.5b is the negative impact of
having Yuumi on a team in lower ranks, supported by her low win rate in Iron
(Table 5.2). However, in the logistic regression model shown in Table 8.2 there
was a significant interaction term between Yuumi and the Silver rank, which sug-
gests Yuumi’s effectiveness increases in higher tiers, hinting at her complexity and
utility at advanced levels. Yuumi plays by primarily attaching herself to another
player and boosting their abilities, hence making her relatively simple to play but
one challenge is knowing when to detach and when to boost the other player for
maximum effect.

Overall, the ascending confidence values in association rules across ranks signify a
shift from random selections to strategic decision-making as player skill progresses.
Furthermore, the prevalence of rules at higher ranks underscores strategic associ-
ations over chance occurrences, affirming the decision to exclusively analyse the
Top 4.

Lower ranks display a higher incidence of rules indicating champion choices leading
to losses, whereas higher ranks exhibit rules suggesting champion choices resulting
in victories. This contrast suggests a discerning preference for stronger champi-
ons among higher-ranked players compared to the inclination towards weaker or
familiar ones among lower-ranked players.
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K-means clustering (Figure 7.5) indicates interchangeability between Fighters and
Slayers for similar outcomes, supported by corresponding rules (Table 6.3). A
potential explanation for this is that both Fighters and Slayers possess similar
characteristics in terms of high damage output, mobility, and versatility in com-
bat. As a result, teams may find success with either class depending on their
specific strategies, team compositions, and playstyles. Additionally, the overlap-
ping roles of Fighters and Slayers in engaging and eliminating high-priority targets
contribute to their interchangeability in achieving comparable outcomes within
matches. Further analysis is needed to explore this further and its implications for
team dynamics and strategic decision-making in League of Legends.

Similarly, the absence of Controllers in cluster 4 in Figure 7.5 prompts Tank selec-
tions for comparable match-winning probabilities. This was further evidenced by
the associated rules in Table 6.3. A possible explanation for this could be the com-
plementary roles of Tanks and Controllers in team composition. While Controllers
excel at crowd control and providing utility, Tanks specialise in absorbing damage
and initiating team fights. In the absence of Controllers, teams may opt for Tanks
to fulfil similar functions, ensuring crowd control and frontline presence. Addition-
ally, the strategic importance of controlling objectives and dictating the pace of
team fights may underscore the preference for Tanks in achieving favourable match
outcomes. Further investigation is needed to delve into the specific strategies and
synergies that drive this trend in team composition.

Furthermore, Table 6.3 showed that having a Mage was the highest confidence class
to imply a winning outcome. This may potentially be due to the fact that Mages
excel at dealing burst damage and disrupting enemy formations with crowd control
abilities. Their versatility in both offence and defence allows them to contribute
significantly to team fights. Additionally, Mages often scale well with items and
experience, becoming increasingly powerful as the match progresses. This effect
may be emphasised in the Top 4 where matches are often longer.

Logistic regression Model 8.1, as seen in Table 8.1, reveals Vel’Koz’s presence on
the opposing team diminishes the odds of winning, consistent with his high win
rate in the Top 4 (Table 5.2). Notably, in the logistic regression Model 8.3 in Ta-
ble 8.2, the interaction between Vel’Koz and the Top 4 suggests his effectiveness
increases at higher skill levels.

In summary, findings suggest champions like Lux are relatively easy to play com-
pared to Kai’Sa, Yuumi, or Vel’Koz, aligning with [Mobalytics, 2024] ratings.
Apart from Yuumi who is rated easy on the website, perhaps because her con-
trols are relatively simple but utilising them to benefit the team is quite difficult.
Moreover, the study validates the hierarchical rank system in the game, reflecting
varying strategic decisions across ranks.
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9.2 Limitations

The data collection took place during League of Legends Patches 13.22 and 13.23,
which may now be considered outdated. However, while the data itself may be
dated, the methodologies used remain relevant. There exists an opportunity for
validation and further exploration using more current datasets. Additionally, allo-
cating additional computational resources could enhance the extension of methods,
such as incorporating interaction terms within logistic regression.

There are other game mechanics as explained in Section 2.1 such as elemental
dragons that can buff the team or the use of purchasing items to enhance abili-
ties, that could also influence the effectiveness of team composition. These were
not feasible to include in this dissertation due to the increase in complexity and
computational demand.

Several potential sources of bias can influence individual matches. These include
instances where players create new accounts, which may not accurately reflect their
true skill level, or situations where players become disconnected. Furthermore, in-
tentional under performance or early departure from a match due to dissatisfaction
can also introduce bias. For instance, if a player disconnects during a game, their
opponent may gain an advantage by more easily levelling up. Moreover, deliber-
ate actions by players to concede kills to the opposing team can distort results,
potentially leading to an undeserved loss for their own team.

9.3 Implications and Applications

The turn-based champion selection system in League of Legends allows players to
strategically counter opponents’ choices, hinting at a potential rock-paper-scissors
mechanic that could shape team compositions and outcomes. Delving deeper into
this dynamic warrants future investigation, subject to gaining access to champion
selection order data, currently inaccessible through the API. Hence, advancing the
API’s capabilities or employing alternative data collection methods becomes im-
portant for further exploration.

Furthermore, future research should take into account global player differences, as
the current study is limited to data from a single region. It is possible that play-
ers from various regions exhibit diverse playstyles. For instance, certain regions
may favour a more aggressive approach while others prioritise a defensive position.
Nonetheless, the findings presented in this dissertation offer a valuable foundation
for cross-regional comparisons, enabling researchers to assess potential variations
in playstyles across different regions.

Furthermore, this analysis focused on the individual champions and their classes.
This could be extended to sub-classes or other ways of categorising the champions.
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10 Conclusion

In summary, this dissertation has contributed to the growing body of knowledge
at the intersection of mathematics and gaming. By utilising machine learning
techniques, I have uncovered valuable insights into understanding the complex
strategies in competitive gaming, particularly within League of Legends.

The data gathered consisted of 96,000 matches which were evenly distributed
across the different groups of ranks. For each match, the key information gathered
was a list of champions played in each team and the final outcome of the match.
This was then transformed into a binary dataset. Initially, the ID number of each
match was retained to ensure no match was repeated. However, the data was made
anonymous during the transformation to a binary dataset.

It is essential to acknowledge the data collection limitations. Factors like potential
rank fluctuations during the collection period and the possibility of skewed match
outcomes due to intentional poor play. Any matches containing a player that
purposely played badly could have skewed a champion’s win rates. However, mea-
sures were taken to address these limitations, ensuring a more balanced dataset
for analysis. These included collecting the data in the shortest feasible time frame
with the computational constraints and studying the ranked version of the game
where theoretically there should be the fewest purposely lost matches.

The analysis used association rule learning mainly to discover associations between
individual champions. Whereas, clustering was most useful for visualising the dif-
ferent classes of champions and logistic regression was useful for investigating the
influence of rank within the game. However, a limitation of logistic regression was
that it was not beneficial for prediction. Despite this it was beneficial for validat-
ing the other results.

The findings highlight several key insights. Notably, difficulty levels were identified
among champions, suggesting strategic recommendations for novice players. These
include champions like Lux being denoted as relatively easy to play in compari-
son to Kai’Sa, Yuumi, or Vel’Koz. This is relatively consistent with the difficulty
ratings provided by [Mobalytics, 2024]. Moreover, the analysis underscores the
significance of rank-based systems in team composition. Alongside with the inter-
changeable utility of certain champion classes, such as Fighters and Slayers.

Moving forward, there are many possibilities for further investigation. Subsequent
studies could broaden their scope by incorporating data from multiple regions
to validate the findings. Additionally, enhancing logistic models with interaction
terms, given sufficient computational resources, could yield deeper insights into
which champions work best together or have negative impacts on the performance
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of others. Furthermore, there is potential to delve into other aspects of gameplay
dynamics, such as the impact of in-game objectives like the elemental dragons or
the use of items. Additionally, examining the temporal stability of the findings
amidst game updates could provide valuable insights into the evolving trends of the
game. If the game developers are afforded the ability to discover which champions
remain strong or weak, this may shed light in the need for a significant change in
their ability levels.

Beyond the academic implications, the research carries broader significance for
the gaming industry. The methodologies used here could be applied to a variety
of other competitive games. The findings underscore the importance of balanced
game design and presents opportunities for the development of recommendation
systems to enhance player experience. In conclusion, this dissertation not only
advances our understanding of gaming dynamics but also validates the utility of
statistical methodologies within the eSports domain. It is anticipated that the find-
ings will stimulate further research, inspire novel approaches to data-driven analy-
sis, and foster collaborations between mathematics and gaming communities. Ulti-
mately, this should encourage positive advancements in strategic decision-making,
game balance, and player experience within League of Legends and beyond.
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A Champion Information Table

Champion Name Champion ID Class Sub-Class Position
Aatrox 266 Fighter Juggernaut Top
Ahri 103 Mage Burst Mid
Akali 84 Slayer Assassin Mid
Akshan 166 Marksman Marksman Mid
Alistar 12 Tank Vanguard Support
Amumu 32 Tank Vanguard Jungle
Anivia 34 Mage Battlemage Mid
Annie 1 Mage Burst Mid

Aphelios 523 Marksman Marksman Bot
Ashe 22 Marksman Marksman Bot

Aurelion Sol 136 Mage Battlemage Mid
Azir 268 Specialist Specialist Mid
Bard 432 Controller Catcher Support

Belveth 200 Slayer Skirmisher Jungle
Blitzcrank 53 Controller Catcher Support
Brand 63 Mage Burst Support
Braum 201 Tank Warden Support
Briar 233 Fighter Diver Jungle
Caitlyn 51 Marksman Marksman Bot
Camille 164 Fighter Diver Top

Cassiopeia 69 Mage Battlemage Mid
Cho’Gath 31 Specialist Specialist Top
Corki 42 Marksman Marksman Mid
Darius 122 Fighter Juggernaut Top
Diana 131 Fighter Diver Jungle

Dr. Mundo 119 Fighter Juggernaut Top
Draven 36 Marksman Marksman Bot
Ekko 245 Slayer Assassin Jungle
Elise 60 Fighter Diver Jungle

Evelynn 28 Slayer Assassin Jungle
Ezreal 81 Marksman Marksman Bot

Fiddlesticks 9 Specialist Specialist Jungle
Fiora 114 Slayer Skirmisher Top
Fizz 105 Slayer Assassin Mid
Galio 3 Tank Warden Support

Gangplank 41 Specialist Specialist Top
Garen 86 Fighter Juggernaut Top
Gnar 150 Specialist Specialist Top
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Gragas 79 Tank Vanguard Top
Graves 104 Specialist Specialist Jungle
Gwen 887 Slayer Skirmisher Top

Hecarim 120 Fighter Diver Jungle
Heimerdinger 74 Specialist Specialist Mid

Illaoi 420 Fighter Juggernaut Top
Irelia 39 Fighter Diver Top
Ivern 427 Controller Catcher Jungle
Janna 40 Controller Enchanter Support

Jarvan IV 59 Fighter Diver Support
Jax 24 Slayer Skirmisher Top
Jayce 126 Mage Artillery Top
Jhin 202 Controller Catcher Bot
Jinx 222 Marksman Marksman Bot
Kai’Sa 145 Marksman Marksman Bot
Kalista 429 Marksman Marksman Bot
Karma 43 Controller Enchanter Support
Karthus 30 Mage Battlemage Jungle
Kassadin 38 Slayer Assassin Mid
Katarina 55 Slayer Assassin Mid
Kayle 10 Specialist Specialist Top
Kayn 141 Slayer Skirmisher Jungle
Kennen 85 Specialist Specialist Top
Kha’Zix 121 Slayer Assassin Jungle
Kindred 203 Marksman Marksman Jungle
Kled 240 Slayer Skirmisher Top

Kog’Maw 96 Marksman Marksman Bot
K’sante 897 Slayer Skirmisher Top
LeBlanc 7 Mage Burst Mid
Lee Sin 64 Fighter Diver Jungle
Leona 89 Tank Vanguard Support
Lillia 876 Slayer Skirmisher Jungle

Lissandra 127 Mage Burst Mid
Lucian 236 Marksman Marksman Bot
Lulu 117 Controller Enchanter Support
Lux 99 Mage Artillery Support

Malphite 54 Tank Vanguard Top
Malzahar 90 Mage Battlemage Mid
Maokai 57 Tank Vanguard Top

Master Yi 11 Slayer Skirmisher Jungle
Milio 902 Controller Enchanter Support
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Miss Fortune 21 Marksman Marksman Bot
Wukong 62 Fighter Diver Jungle

Mordekaiser 82 Fighter Juggernaut Top
Morgana 25 Controller Catcher Support
Naafiri 950 Slayer Assassin Mid
Nami 267 Controller Enchanter Support
Nasus 75 Fighter Juggernaut Top

Nautilus 111 Tank Vanguard Support
Neeko 518 Mage Burst Support
Nidalee 76 Specialist Specialist Jungle
Nilah 895 Slayer Skirmisher Bot

Nocturne 56 Slayer Assassin Jungle
Nunu & Willump 20 Tank Vanguard Jungle

Olaf 2 Fighter Diver Top
Orianna 61 Mage Burst Mid
Ornn 516 Tank Vanguard Top

Pantheon 80 Fighter Diver Support
Poppy 78 Tank Warden Jungle
Pyke 555 Controller Catcher Support
Qiyana 246 Slayer Assassin Mid
Quinn 133 Specialist Specialist Top
Rakan 497 Controller Catcher Support

Rammus 33 Tank Vanguard Jungle
Rek’Sai 421 Fighter Diver Jungle
Rell 526 Tank Vanguard Support

Renata 888 Controller Enchanter Support
Renekton 58 Fighter Diver Top
Rengar 107 Fighter Diver Jungle
Riven 92 Slayer Skirmisher Top
Rumble 68 Mage Battlemage Top
Ryze 13 Mage Battlemage Mid
Samira 360 Marksman Marksman Bot
Sejuani 113 Tank Vanguard Jungle
Senna 235 Controller Enchanter Support

Seraphine 147 Controller Enchanter Support
Sett 875 Fighter Juggernaut Top
Shaco 35 Slayer Assassin Jungle
Shen 98 Tank Warden Top

Shyvana 102 Fighter Juggernaut Jungle
Singed 27 Specialist Specialist Top
Sion 14 Tank Vanguard Top
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Sivir 15 Marksman Marksman Bot
Skarner 72 Tank Vanguard Jungle
Sona 37 Controller Enchanter Support
Soraka 16 Controller Enchanter Support
Swain 50 Mage Battlemage Support
Sylas 517 Mage Burst Mid
Syndra 134 Mage Burst Mid

Tahm Kench 223 Tank Warden Top
Taliyah 163 Mage Battlemage Mid
Talon 91 Slayer Assassin Mid
Taric 44 Controller Enchanter Support
Teemo 17 Specialist Specialist Top
Thresh 412 Controller Catcher Support
Tristana 18 Marksman Marksman Bot
Trundle 48 Fighter Juggernaut Jungle

Tryndamere 23 Slayer Skirmisher Top
Twisted Fate 4 Mage Burst Mid

Twitch 29 Marksman Marksman Bot
Udyr 77 Fighter Juggernaut Jungle
Urgot 6 Fighter Juggernaut Top
Varus 110 Mage Artillery Bot
Vayne 67 Marksman Marksman Bot
Veigar 45 Mage Burst Mid
Vel’Koz 161 Mage Artillery Support
Vex 711 Mage Burst Mid
Vi 254 Fighter Diver Jungle

Viego 234 Slayer Skirmisher Jungle
Viktor 112 Mage Battlemage Mid

Vladimir 8 Mage Battlemage Mid
Volibear 106 Fighter Juggernaut Top
Warwick 19 Fighter Diver Jungle
Xayah 498 Marksman Marksman Bot
Xerath 101 Mage Artillery Support

Xin Zhao 5 Fighter Diver Jungle
Yasuo 157 Slayer Skirmisher Mid
Yone 777 Slayer Skirmisher Mid
Yorick 83 Fighter Juggernaut Top
Yuumi 350 Controller Enchanter Support
Zac 154 Tank Vanguard Jungle
Zed 238 Slayer Assassin Mid
Zeri 221 Marksman Marksman Bot
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Ziggs 115 Mage Artillery Bot
Zilean 26 Specialist Specialist Support
Zoe 142 Mage Burst Mid
Zyra 143 Controller Catcher Support

This information was originally gathered in December 2023 and was verified on
21/04/2024 using [League of Legends Wiki, 2024a]. Those with multiple classes
or positions were categorised based on which is more common in my experience.

A.1 Explanation of Sub-Classes

In addition to the previously mentioned classes in Section 2.2, there are sub-classes.
For Controllers these are Catchers and Enchanters. Catchers specialise in crowd
control and map pressure by finding opportunities to catch enemies out. Whereas,
Enchanters focus on amplifying their allies by temporarily increasing their statis-
tics or healing and shielding allies to increase their survivability. Secondly, in the
Fighter class, there are Juggernauts and Divers. Juggernauts are melee focused
bruisers that run down the enemy with the ability to deal and receive significant
amounts of damage but they lack mobility. On the other hand, Divers can focus
on high priority targets by having the manoeuvrability that the Juggernaut lacks
while lacking the durability. Thirdly, the Mage class is split up into Artillery,
Burst and Battlemages. Artillery Mages have extensive range for their spells but
can easily be punished if an enemy gets too close to them. Burst mages will focus
on targeting vulnerable enemies with abilities that can quickly kill the opponent.
Battlemages are often on the frontline of fights to provide sustained damage on the
enemy team. Fourth, Slayers have sub-classes of Assassins and Skirmishers. As-
sassins focus on infiltrating the enemy frontline with their mobility and often have
the ability to quickly disengage or negate incoming damage. On the other hand,
Skirmishers have the ability to cut down enemies looking to duel them and use
defensive abilities to push through the frontline. Finally, Tanks have sub-classes
of Vanguard and Wardens. Vanguards are offensive and initiate team fights due
to their ability to take a large amount of damage. On the other hand, Wardens
are defensive champions who hold down the line and defend their more vulnerable
allies. Both Marksmen and Specialists possess no sub-classes.
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B Logistic Regression Model 8.3 Tables

Term Log Odds Odds Estimate P-value

Intercept -0.005 0.995 0.691

Lux 0.034 1.035 0.287

Iron -0.011 0.989 0.505

Silver -0.002 0.998 0.913

Gold 0.008 1.009 0.615

Platinum/Emerald 0.004 1.004 0.812

Top 4 0.005 1.005 0.748

Lux × Iron 0.076 1.079 0.091

Lux × Silver 0.018 1.019 0.692

Lux × Gold -0.070 0.932 0.151

Lux × Platinum/Emerald -0.024 0.976 0.647

Lux × Top 4 -0.053 0.948 0.483

Term Log Odds Odds Estimate P-value

Intercept 0.001 1.001 0.930

Kai’Sa -0.012 0.988 0.766

Iron 0.000 1.000 0.994

Silver 0.008 1.008 0.622

Gold 0.003 1.003 0.879

Platinum/Emerald 0.012 1.012 0.490

Top 4 0.005 1.005 0.757

Kai’Sa × Iron -0.002 0.998 0.974

Kai’Sa × Silver -0.091 0.913 0.102

Kai’Sa × Gold -0.022 0.978 0.685

Kai’Sa × Platinum/Emerald -0.100 0.905 0.060

Kai’Sa × Top 4 -0.030 0.970 0.553

Term Log Odds Odds Estimate P-value

Intercept 0.000 1.000 0.969

Corki -0.145 0.865 0.477

Iron -0.002 0.998 0.918

Silver -0.001 0.999 0.943

Gold 0.000 1.000 0.991

Platinum/Emerald 0.001 1.001 0.965

Top 4 0.000 1.000 0.994

Corki × Iron 0.590 1.804 0.049

Corki × Silver 0.378 1.460 0.193

Corki × Gold 0.088 1.092 0.738

Corki × Platinum/Emerald -0.074 0.929 0.774

Corki × Top 4 -0.009 0.991 0.977
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Term Log Odds Odds Estimate P-value

Intercept 0.006 1.006 0.576

Yuumi -0.292 0.747 0.000

Iron 0.009 1.010 0.554

Silver -0.005 0.995 0.734

Gold -0.002 0.998 0.913

Platinum/Emerald -0.005 0.995 0.755

Top 4 -0.004 0.996 0.799

Yuumi × Iron -0.215 0.807 0.034

Yuumi × Silver 0.243 1.275 0.033

Yuumi × Gold 0.018 1.019 0.874

Yuumi × Platinum/Emerald 0.220 1.246 0.053

Yuumi × Top 4 -0.106 0.899 0.530

Term Log Odds Odds Estimate P-value

Intercept 0.000 1.000 0.986

Vel’Koz 0.009 1.009 0.907

Iron -0.001 0.999 0.975

Silver -0.001 0.999 0.955

Gold 0.000 1.000 0.997

Platinum/Emerald 0.001 1.001 0.930

Top 4 -0.002 0.998 0.877

Vel’Koz × Iron 0.030 1.030 0.795

Vel’Koz × Silver 0.043 1.043 0.699

Vel’Koz × Gold 0.005 1.005 0.967

Vel’Koz × Platinum/Emerald -0.072 0.930 0.522

Vel’Koz × Top 4 0.266 1.305 0.055

Term Log Odds Odds Estimate P-value

Intercept -0.001 0.999 0.901

Shyvana 0.066 1.068 0.396

Iron 0.000 1.000 0.997

Silver 0.000 1.000 0.990

Gold 0.002 1.002 0.914

Platinum/Emerald -0.001 0.999 0.965

Top 4 0.003 1.003 0.873

Shyvana × Iron 0.008 1.008 0.943

Shyvana × Silver 0.004 1.004 0.974

Shyvana × Gold -0.081 0.922 0.462

Shyvana × Platinum/Emerald 0.061 1.063 0.602

Shyvana × Top 4 -0.502 0.605 0.034
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