MATH319 Slides

51 Solving MIMO

Corollary

For any initial condition X0 and any continuous input U, the solution of (A,B,C,D) is

Y(t)=Cexp(tA)X0+0tCexp((t-s)A)BU(s)𝑑s+DU(t).

Proof. From the theorem, we take

X(t)=exp(tA)X0+0texp((t-s)A)U(s)𝑑s

and then

Y(t)=CX(t)+DU(t).