MATH319 Slides

43 Conclusion of proof of Corollary

exp(tA)SS-1j=1rexp(tJkj(λj))
SS-1j=1retλj=0kj-1tNkj!.

Now choose ε>0 such that λj+ε<β. Observe that te-εt is bounded for all t>0, also etλjeβte-εt, so

M=supt>0(e-εtSS-1j=1r=0kj-1tNkj!)

is finite. Hence

exp(tA)Meβt  (t>0).