MATH319 Slides

22 Norm of a vector

Let V=𝐂n×1, the column vectors. The standard inner product on V is defined for z=column(zj)j=1n w=column(wj)j=1n by

z,w=w¯Tz=j=1nzjw¯j.

Then

z+u,w=z,w+u,w
λz,w=λz,w,z,w¯=w,z

On V the standard norm is the Euclidean norm for z=column(zj)j=1n

(zj)j=1n=(j=1n|zj|2)1/2=(z¯Tz)1/2=z,z1/2.