Home page for accesible maths 3 Probability Models

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.8 The Cauchy Distribution: 𝖢𝖺𝗎𝖼𝗁𝗒

  1. fX(x)=1π(1+x2) for -<x<,

  2. FX(x)=1πarctan(x)+12,

  3. 𝖤[X] not defined.

We write X𝖢𝖺𝗎𝖼𝗁𝗒.

Unnumbered Figure: Link

Now, for b>0,

0btπ(1+t2)dx=12π[log(1+t2)]0b=12πlog(1+b2)

and similarly, for a<0, a0xπ(1+x2)𝑑x=-log(1+a2). Thus

-tπ(1+t2)dt=lima-,babtπ(1+t2)dt=lima-,b(log(1+b2)-log(1+a2)),

which is not defined since it can take any desired value depending on the relative speeds with which a- and b.

Convolution: If X1,,Xn are independent Cauchy rvs, then (X1++Xn)/n𝖢𝖺𝗎𝖼𝗁𝗒.

Transformations: If U𝖴𝗇𝗂𝖿(-π/2,π/2), then tan(U)𝖢𝖺𝗎𝖼𝗁𝗒. If X1𝖭(0,1) and X2𝖭(0,1) are independent, then X1/X2𝖢𝖺𝗎𝖼𝗁𝗒.

Reciprocal: if X𝖢𝖺𝗎𝖼𝗁𝗒 then 1/X𝖢𝖺𝗎𝖼𝗁𝗒. Quiz: How do we know this, given the above? When X1 and X2 are both 𝖭(0,1), X1/X2 and X2/X1 must have the same distribution, by symmetry.