Home page for accesible maths 3 Probability Models

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.5 The Beta Distribution: 𝖡𝖾𝗍𝖺(α1,α2)

Parameters: 𝜽=(α1,α2) with α1>0 and α2>0 both shape parameters.

fX(x;𝜽)=1B(α1,α2)xα1-1(1-x)α2-1

for 0x1, where

  1. B(α1,α2)=Γ(α1)Γ(α2)Γ(α1+α2),

  2. 𝖤[X]=α1α1+α2,

  3. 𝖵𝖺𝗋[X]=α1α2(α1+α2)2(α1+α2+1).

We write XBeta(α1,α2).

A proof that 01xα1-1(1-x)α2-1=B(α1,α2) is given in the appendix.

Usage: The family of Beta distributions constitutes a flexible class of distributions on [0,1] used for modelling. The Beta(1,1) distribution is the uniform distribution on [0,1].

Example 3.5.1.

Prove that if X𝖡𝖾𝗍𝖺(2,5) that 𝖤[X]=22+5 using the unit integrability property of the pdf.

Solution. 

𝖤[X] =01xΓ(2+5)Γ(2)Γ(5)x2-1(1-x)5-1dx
=Γ(2+5)Γ(2)Γ(5)01x3-1(1-x)5-1dx
=Γ(2+5)Γ(2)Γ(5)Γ(3)Γ(5)Γ(3+5)×Γ(3+5)Γ(3)Γ(5)01x3-1(1-x)5-1dx
=Γ(2+5)Γ(2)Γ(5)Γ(3)Γ(5)Γ(3+5)×1
=22+5,

using the recurrence relations Γ(α+1)=αΓ(α).

Unnumbered Figure: First link, Second Link

Unnumbered Figure: First link, Second Link

Example 3.5.2.

Express the probability that a rv X𝖡𝖾𝗍𝖺(2,3) is less than 0.5 as an integral. Evaluate the integral and verify your answer by simulation. Verify by simulation that the expected value of X is about 0.4.

Solution. 

fX(x)=Γ(2+3)Γ(2)Γ(3)x2-1(1-x)3-1

for 0x1 and since Γ(5)Γ(2)Γ(3)=12,

𝖯(X0.5) =x=00.512x1(1-x)2dx =x=00.512x-24x2+12x3dx,

so

𝖯(X0.5)=[6x2-8x3+3x4]01/2=11/16=0.6875.

xsample = rbeta(10000,2,3); mean(xsample<0.5)

[1] 0.6837

mean(xsample)

[1] 0.401731

Note that 𝖤[X]=α1α1+α2=2/5.