Home page for accesible maths 2.4 Continuous random variables

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

An illuminating idea

For some very small interval width δ,

𝖯(x<Xx+δ) =FX(x+δ)-FX(x)
=xx+δfX(s)ds
fX(x)δ.

Thus fX(x)δ can be thought of as (approximately) the probability that X is between x and x+δ.

On rearranging we obtain

fX(x)[F(x+δ)-F(x)]/δdFX/dx,

with the approximations becoming exact in the limit as δ0. This illustrates the equivalence of (2.3) and our definition of fX(x).

Example 2.4.1.

A random variable X has cumulative distribution function

FX(x)={0x0x0<x11x>1

Find the pdf of X.

Solution. 

fX(x)=ddxFX(x)={0x010<x10x>1
Example 2.4.2.

A triangular pdf: a random variable X has pdf

fX(x)={1+x-1<x01-x0<x10otherwise

Obtain the cdf FX(x).

Solution.  Important: We split the range of x, (-,) into sensible intervals.

  • For x(-,-1],

    F(x)=-xfX(s)ds=-x0ds=0.
  • For x(-1,0],

    F(x) =-xfX(s)ds
    =F(-1)+-1x1+sds
    =0+[s+s2/2]-1x
    =x+x2/2+1/2=(1+x)2/2.
  • For x(0,1],

    F(x) =-xfX(s)ds
    =F(0)+0x1-sds
    =1/2+[s-s2/2]0x
    =1/2+x-x2/2=1-(1-x)2/2.
  • For x(1,),

    F(x)=-xfX(s)ds=F(1)+1x0ds=1.

Hence

FX(x)={0x-1(1+x)2/2-1<x01-(1-x)2/20<x11x>1
Example 2.4.3.

Find 𝖯(-0.5<X<2), where X is the random variable from the previous example.

Solution.  FX(2)-FX(-0.5)=1-(1-0.5)2/2=7/8.