Home page for accesible maths C Proofs of additional results

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.1 𝖯(X=x)=FX(x)-limiFX(x-1/i)

The basic argument is given below and is relatively straightforward. However, it requires that

𝖯(i=1{ω:x-1/i<X(ω)x})=limi𝖯({ω:x-1/i<X(ω)x}),

which itself requires the axiom of ‘countable subadditivity’ and is proved in the subsection that follows.

Firstly, {x}=i=1{s:x-1/i<sx}, so

𝖯(X=x) =𝖯(ω:X(ω)=x)
=𝖯(i=1{ω:x-1/i<X(ω)x})
=limi𝖯({ω:x-1/i<X(ω)x})

(see Appendix 3.1.1). So

𝖯(X=x) =limi𝖯({ω:X(ω)x})-𝖯({ω:X(ω)x-1/i})
=limi𝖯(Xx)-𝖯(Xx-1/i)
=limiFX(x)-FX(x-1/i)
=FX(x)-limiFX(x-1/i).