Homework 2.

  1. 1.

    Compute limn7n18+5n5+13n18+5n3+3  (2 points)

  2. 2.

    Compute limn(1+1n)(1+1n2)  (2 points)

  3. 3.

    Somebody came up with the definition of “bonvergence”: A sequence of real numbers {xn}n=1 “bonverges” to a real number x if:

    ε>0N>0,nN:|xn-x|<ε.

    • Give an example of a “bonvergent” sequence that is not “convergent”. (justify your answer by giving an explicit ε and N) (3 points)

    • Is it true that if {xn}n=1 “bonverges” to x and {xn}n=1 “bonverges” to y, then x always equals to y? (justify your answer) (3 points)