Home page for accesible maths 3 Mathematical proofs

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

3.3 Proof by contraposition

We saw in Example 2.3.7 that the statement ‘‘pqp\Rightarrow q’’ is equivalent to its contrapositive ‘‘(¬q)(¬p)(\neg q)\Rightarrow(\neg p)’’. Thus, to deduce qq from pp, we may suppose that qq is false and then deduce from this that pp is false.

Example 3.3.1

Let xx be a real number. If x2<9x^{2}<9, then x<3x<3.

Proof. This follows because the contrapositive statement,

¬(x<3)¬(x2<9),that is,  (x3)(x29),\neg(x<3)\Rightarrow\neg(x^{2}<9),\qquad\text{that is,}\qquad(x\geqslant 3)% \Rightarrow(x^{2}\geqslant 9),

is clearly true, as we see by squaring both sides of the inequality x3.x\geqslant 3. \Box

Example 3.3.2

Let xx and yy be real numbers. If x+yx+y\notin\mathbb{Q}, then xx\notin\mathbb{Q} or yy\notin\mathbb{Q}.

Proof. In symbols, the statement is

(x+y)((x)or(y)).(x+y\notin\mathbb{Q})\Rightarrow\bigl((x\notin\mathbb{Q})\ \text{or}\ (y\notin% \mathbb{Q})\bigr).

Therefore the contrapositive statement is

¬((x)or(y))¬(x+y)\neg\bigl((x\notin\mathbb{Q})\ \text{or}\ (y\notin\mathbb{Q})\bigr)\Rightarrow% \neg(x+y\notin\mathbb{Q})

which is logically equivalent to

((x)&(y))(x+y).\bigl((x\in\mathbb{Q})\ \&\ (y\in\mathbb{Q})\bigr)\Rightarrow(x+y\in\mathbb{Q}). (3.3.1)

To prove (3.3.1), suppose that xx\in\mathbb{Q} and yy\in\mathbb{Q}. Then we can write

x=ab  and  y=cdx=\frac{a}{b}\qquad\text{and}\qquad y=\frac{c}{d}

for some a, b, c, da,\,b,\,c,\,d\in\mathbb{Z} with b, d0b,\,d\neq 0, and consequently we have

x+y=ab+cd=ad+bcbd,x+y=\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\in\mathbb{Q},

where bd0bd\neq 0. Hence the statement on the right-hand side of (3.3.1) is true, as required. \Box

Example 3.3.3

Let nn be an integer. Then nn is a multiple of 33 if and only if n2n^{2} is a multiple of 33.

Proof. ‘‘\Rightarrow’’. Suppose that nn is a multiple of 33, say n=3mn=3m, where mm\in\mathbb{Z}. Then

n2=(3m)2=9m2=3(3m2),n^{2}=(3m)^{2}=9m^{2}=3(3m^{2}),

so that n2n^{2} is a multiple of 33 because 3m23m^{2}\in\mathbb{Z}.

‘‘\Leftarrow’’. We seek to prove that

(n2is a multiple of 3)(nis a multiple of 3)(n^{2}\ \text{is a multiple of}\ 3)\ \Rightarrow\ (n\ \text{is a multiple of}\ 3)

which by contraposition can be rewritten as

(nis not a multiple of 3)(n2is not a multiple of 3).(n\ \text{is not a multiple of}\ 3)\ \Rightarrow\ (n^{2}\ \text{is not a % multiple of}\ 3).

To verify this, suppose that nn is not a multiple of 33. Then either n=3m+1n=3m+1 or n=3m+2n=3m+2 for some mm\in\mathbb{Z}. In the first case

n2=(3m+1)2=9m2+6m+1=3(3m2+2m)+1,n^{2}=(3m+1)^{2}=9m^{2}+6m+1=3(3m^{2}+2m)+1,

so n2n^{2} is not a multiple of 33. Similarly, in the second case,

n2=(3m+2)2=9m2+12m+4=3(3m2+4m+1)+1,n^{2}=(3m+2)^{2}=9m^{2}+12m+4=3(3m^{2}+4m+1)+1,

so again n2n^{2} is not a multiple of 33. \Box

Remark 3.3.4

As we have seen in Example 3.3.3, when proving a statement of the form ‘‘pqp\Leftrightarrow q’’, we may use contraposition to prove one of the two implications; thus, to prove ‘‘pqp\Leftrightarrow q’’, we may show that both implications ‘‘pqp\Rightarrow q’’ and ‘‘(¬p)(¬q)(\neg p)\Rightarrow(\neg q)’’ hold.