Home page for accesible maths 8.1 Joint probability mass functions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

8.1.1 Properties of pX,Y(x,y):

  1. 1.

    For all x and y, 0pX,Y(x,y)1,

  2. 2.

    all x,ypX,Y(x,y)=1,

  3. 3.

    P((X,Y)A)=(x,y)ApX,Y(x,y).

Example 8.2.

The joint pmf of X and Y is

pX,Y(x,y)=(x+y)/18

for x,y=0,1,2.

  1. a.

    Write out the joint probability table.

  2. b.

    Show this is a valid joint pmf.

  3. c.

    Evaluate (i) P(X=2), (ii) P(X=Y), (iii) P(X+Y2).

Solution.
  1. a.
    ypX,Y(x,y)012001/182/18x11/182/183/1822/183/184/18
  2. b.

    pX,Y(x,y)0 for all x,y, and all (x,y)pX,Y(x,y)=(0+1+2+1+2+3+2+3+4)/18=1.

  3. c.

    (i) P(X=2)=P((X,Y){(2,0),(2,1),(2,2)})=2/18+3/18+4/18=9/18
    (ii) P(X=Y)=P((X,Y){(0,0),(1,1),(2,2)})=0/18+2/18+4/18=6/18
    (iii) P(X+Y2)=P((X,Y){(0,2),(1,1),(1,2),(2,0),(2,1),(2,2)})=(2+2+3+2+3+4)/18=16/18


Note that each of X and Y still have their own probability mass functions pX and pY. In the context of jointly distributed random variables, these are called the marginal probability mass functions.

pX(x)=P(X=x)=P((X,Y){(x,0),(x,1),(x,2),})=y=0pX,Y(x,y).

Similarly,

pY(y)=x=0pX,Y(x,y).

Exercise 8.3.

Bivariate random variables X and Y have joint pmf

y pX(x)
0 1 2 3
x 1 5/60 8/60 2/60 1/60 16/60
2 12/60 7/60 3/60 2/60 24/60
3 4/60 8/60 6/60 2/60 20/60
pY(y) 21/60 23/60 11/60 5/60 1

Fill in the marginal pmfs in the final row and column.