Home page for accesible maths 9 Workshop Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

9.3 Workshop Solutions 3

True or False?

i) True, since x=rcosθx=r\cos\theta and y=rsinθy=r\sin\theta.

ii) False. The set of points given by θ=π4\theta=\frac{\pi}{4} is only half of the line y=xy=x: the points (x,x)(x,x) with x<0x<0 are given by θ=5π4\theta=\frac{5\pi}{4}.

iii) False. The gradient is -fxfy-\frac{f_{x}}{f_{y}}. To see this, we differentiate f(x,y)=0f(x,y)=0 with respect to xx to get fx+fydydx=0f_{x}+f_{y}\frac{dy}{dx}=0, so that fydydx=-fxf_{y}\frac{dy}{dx}=-f_{x} and hence dydx=-fxfy\frac{dy}{dx}=-\frac{f_{x}}{f_{y}}.

iv) False: we also require fxxfyy-fxy2>0f_{xx}f_{yy}-f_{xy}^{2}>0 (see slide 4.11 in the notes).

W3.1. We have x=cosht0x=\cosh t\geq 0 and

x2-y2=cosh2t-sinh2t=1,x^{2}-y^{2}=\cosh^{2}t-\sinh^{2}t=1,

so (x,y)(x,y) lies on the right branch of the hyperbola.

(ii) dxdt=sinht{{dx}\over{dt}}=\sinh t and dydt=cosht{{dy}\over{dt}}=\cosh t so

dydx=dy/dtdx/dt=coshtsinht=cotht.{{dy}\over{dx}}={{dy/dt}\over{dx/dt}}={{\cosh t}\over{\sinh t}}=\coth t.

W3.2 (i) With x=at2x=at^{2} and y=2aty=2at we have

y2=4a2t2=4ax,y^{2}=4a^{2}t^{2}=4ax,

so (x,y)(x,y) lies on CC.

(ii) We have

dxdt=2at,  dydt=2a,{{dx}\over{dt}}=2at,\qquad{{dy}\over{dt}}=2a,

so the tangent has gradient

dydx=dy/dtdx/dt=1t,{{dy}\over{dx}}={{dy/dt}\over{dx/dt}}={{1}\over{t}},

and the tangent has equation

y-2at=1t(x-at2), or (rearranging)y=xt+at;y-2at={{1}\over{t}}(x-at^{2}),\quad{\hbox{or (rearranging)}}\quad y={{x}\over{% t}}+at;

whereas the normal has gradient

-dxdy=-t,-{{dx}\over{dy}}=-t,

so the normal has equation

y-2at=-t(x-at2).y-2at=-t(x-at^{2}).

(iii) To determine the arc length we integrate (dxdt)2+(dydt)2\sqrt{\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}} over tt, from t=0t=0 to t=1t=1; another possibility is to integrate 1+(dxdy)2\sqrt{1+\left(\frac{dx}{dy}\right)^{2}} over yy, from y=0y=0 to y=2ay=2a. If we try to integrate 1+(dydx)2\sqrt{1+\left(\frac{dy}{dx}\right)^{2}} over xx then we obtain a slightly awkward integral of 1+ax\sqrt{1+\frac{a}{x}}, which needs a substitution.

Since dxdt=2at\frac{dx}{dt}=2at and dydt=2a\frac{dy}{dt}=2a, we see that the arc length is

014a2+4a2t2dt=2a011+t2dt.\int_{0}^{1}\sqrt{4a^{2}+4a^{2}t^{2}}\,dt=2a\int_{0}^{1}\sqrt{1+t^{2}}\,dt.

Now we make the substitution t=sinhut=\sinh u, so that 1+t2=coshu\sqrt{1+t^{2}}=\cosh u and dt=coshududt=\cosh u\,du. Thus the integral becomes

2a0sinh-11cosh2udu=a0sinh-11(cosh2u+1)du=a[12sinh2u+u]0sinh-11.2a\int_{0}^{\sinh^{-1}1}\cosh^{2}u\,du=a\int_{0}^{\sinh^{-1}1}(\cosh 2u+1)\,du% =a\left[\frac{1}{2}\sinh 2u+u\right]_{0}^{\sinh^{-1}1}.

We therefore get the awkward result that the arc length is a(sinh-11+12sinh(2sinh-11))a(\sinh^{-1}1+\frac{1}{2}\sinh(2\sinh^{-1}1)), but this can be simplified somewhat. Firstly, sinh(2y)=2sinhycoshy=2sinhy1+sinh2y\sinh(2y)=2\sinh y\cosh y=2\sinh y\sqrt{1+\sinh^{2}y}, so 12sinh(2sinh-11)=2\frac{1}{2}\sinh(2\sinh^{-1}1)=\sqrt{2}. Secondly, we can express sinh-1x\sinh^{-1}x uniquely in terms of xx by solving the equation ey-e-y2=x\frac{e^{y}-e^{-y}}{2}=x, so e2y-2xey-1=0e^{2y}-2xe^{y}-1=0, whence ey=2x±4x2+42e^{y}=\frac{2x\pm\sqrt{4x^{2}+4}}{2}, so y=log(x+x2+1)y=\log(x+\sqrt{x^{2}+1}). In particular, sinh-1=log(1+2)\sinh^{-1}=\log(1+\sqrt{2}). So the arc length from t=0t=0 to t=1t=1 is a(2+log(1+2))a(\sqrt{2}+\log(1+\sqrt{2})).

W3.3 (i) We let x=-cos2θx=-\cos^{2}\theta and y=-sinθcos2θy=-\sin\theta\cos^{2}\theta, then

x2(x+1)=cos4θ(1-cos2θ)=cos4θsin2θ=y2;x^{2}(x+1)=\cos^{4}\theta(1-\cos^{2}\theta)=\cos^{4}\theta\sin^{2}\theta=y^{2};

hence (x,y)(x,y) lies on TT; moreover

dxdθ=2cosθsinθ, dydθ=-cos3θ+2sin2θcosθ;{{dx}\over{d\theta}}=2\cos\theta\sin\theta,\quad{{dy}\over{d\theta}}=-\cos^{3}% \theta+2\sin^{2}\theta\cos\theta;

so

dydx=dy/dθdx/dθ=-cos3θ+2sin2θcosθ2cosθsinθ=2sin2θ-cos2θ2sinθ.{{dy}\over{dx}}={{dy/d\theta}\over{dx/d\theta}}={{-\cos^{3}\theta+2\sin^{2}% \theta\cos\theta}\over{2\cos\theta\sin\theta}}={{2\sin^{2}\theta-\cos^{2}% \theta}\over{2\sin\theta}}.

(ii) Now let x=tan2θx=\tan^{2}\theta and y=secθtan2θy={\hbox{sec}}\,\theta\tan^{2}\theta; then

x2(x+1)=tan4θ(tan2θ+1)=tan4θsec2θ=y2;x^{2}(x+1)=\tan^{4}\theta(\tan^{2}\theta+1)=\tan^{4}\theta{\hbox{sec}}^{2}% \theta=y^{2};

hence (x,y)(x,y) lies on TT; moreover,

dxdθ=2tanθsec2θ, dydθ=secθtan3θ+2tanθsec3θ;{{dx}\over{d\theta}}=2\tan\theta{\hbox{sec}}^{2}\theta,\quad{{dy}\over{d\theta% }}={\hbox{sec}}\theta\tan^{3}\theta+2\tan\theta{\hbox{sec}}^{3}\theta;

so

dydx=dy/dθdx/dθ=secθtan3θ+2tanθsec3θ2tanθsec2θ=tan2θ+2sec2θ2secθ.{{dy}\over{dx}}={{dy/d\theta}\over{dx/d\theta}}={{{\hbox{sec}}\theta\tan^{3}% \theta+2\tan\theta{\hbox{sec}}^{3}\theta}\over{2\tan\theta{\hbox{sec}}^{2}% \theta}}={{\tan^{2}\theta+2\sec^{2}\theta}\over{2{\hbox{sec}}\,\theta}}.

W3.4. (i) We observe that x3=t6=y2x^{3}=t^{6}=y^{2}, so (x,y)(x,y) lies on CC, and x,y0x,y\geq 0, so the point is in the first quadrant.

(ii) We calculate

dxdt=2t,  dydt=3t2,{{dx}\over{dt}}=2t,\qquad{{dy}\over{dt}}=3t^{2},

so arclength is given by

(dsdt)2=(dxdt)2+(dydt)2=4t2+9t4\Bigl({{ds}\over{dt}}\Bigr)^{2}=\Bigl({{dx}\over{dt}}\Bigr)^{2}+\Bigl({{dy}% \over{dt}}\Bigr)^{2}=4t^{2}+9t^{4}

so

La=0adsdtdt=0at4+9t2dtL_{a}=\int_{0}^{a}{{ds}\over{dt}}dt=\int_{0}^{a}t\sqrt{4+9t^{2}}\,dt

so we substitute t2=ut^{2}=u and du/dt=2tdu/dt=2t, so get

La=120a24+9udu=12[239(4+9u)3/2]0a2=127((4+9a2)3/2-43/2).L_{a}={{1}\over{2}}\int_{0}^{a^{2}}\sqrt{4+9u}\,du={{1}\over{2}}\Bigl[{{2}% \over{3\cdot 9}}\bigl(4+9u\bigr)^{3/2}\Bigr]_{0}^{a^{2}}={{1}\over{27}}\Bigl(% \bigl(4+9a^{2})^{3/2}-4^{3/2}\Bigr).

This calculation was first carried out by Neil, and the simple form of the answer caused much surprise at the time.

(iii) When a=1a=1, the precise value of LaL_{a} is 133/2-827\frac{13^{3/2}-8}{27}, which is 1.4401.440 to three decimal places. To apply Simpson’s rule to the integral 01t4+9t2dt\int_{0}^{1}t\sqrt{4+9t^{2}}\,dt, we first have to evaluate the function t4+9t2t\sqrt{4+9t^{2}} at the three points t=0t=0, t=12t=\frac{1}{2} and t=1t=1. The respective values are 00, 124+94=54\frac{1}{2}\sqrt{4+\frac{9}{4}}=\frac{5}{4}, and 13\sqrt{13}. Thus Simpson’s rule produces an estimate of

1-06(1.0+4.54+1.13)=5+136.\frac{1-0}{6}\left(1.0+4.\frac{5}{4}+1.\sqrt{13}\right)=\frac{5+\sqrt{13}}{6}.

This gives us a value of 1.4341.434, less than 1%1\% from the precise value.

W3.5. Let f(x,y)=4x2+xy+6y2-4f(x,y)=4x^{2}+xy+6y^{2}-4; so that f(x,y)=0f(x,y)=0 gives the equation for the ellipse and defines yy implicitly as a function of xx. To find dydx\frac{dy}{dx} we can either use the formula dydx=-fxfy\frac{dy}{dx}=-\frac{f_{x}}{f_{y}}, or we can differentiate the equation f(x,y)=0f(x,y)=0 with respect to xx. The second approach is more instructive, so this is how we’ll do it here. (However, both methods amount to the same thing.)

Since 4x2+xy+6y2-4=04x^{2}+xy+6y^{2}-4=0, when we differentiate with respect to xx we get:

8x+y+xdydx+12ydydx=0.8x+y+x\frac{dy}{dx}+12y\frac{dy}{dx}=0.

Now we collect terms together, so that

(x+12y)dydx=-8x-y, hencedydx=-8x+yx+12y.(x+12y)\frac{dy}{dx}=-8x-y,\;\;\mbox{hence}\;\;\frac{dy}{dx}=-\frac{8x+y}{x+12% y}.

(Note that fx=8x+yf_{x}=8x+y and fy=x+12yf_{y}=x+12y, which tallies with dydx=-fxfy\frac{dy}{dx}=-\frac{f_{x}}{f_{y}}.)

W3.6. (i) We suppose that the formula

x+y=tan-1yx+y=\tan^{-1}y

defines yy implicitly as a function of xx, and we differentiate to obtain

1+dydx=11+y2dydx,1+{{dy}\over{dx}}={{1}\over{1+y^{2}}}{{dy}\over{dx}},

so that

(1+y2)+(1+y2)dydx=dydx,(1+y^{2})+(1+y^{2}){{dy}\over{dx}}={{dy}\over{dx}},

and hence

1+y2+y2dydx=0.1+y^{2}+y^{2}{{dy}\over{dx}}=0.

Alternatively, let f(x,y)=x+y+tan-1yf(x,y)=x+y+\tan^{-1}y with first-order partial derivatives

fx=1, fy=1-11+y2=y21+y2.{{\partial f}\over{\partial x}}=1,\quad{{\partial f}\over{\partial y}}=1-{{1}% \over{1+y^{2}}}={{y^{2}}\over{1+y^{2}}}.

Then the required derivative is

dydx=-f/xf/y=-1+y2y2.{{dy}\over{dx}}=-{{\partial f/\partial x}\over{\partial f/\partial y}}=-{{1+y^% {2}}\over{y^{2}}}.

(ii) We can differentiate the formula

tan-1yx=12log(x2+y2)\tan^{-1}{{y}\over{x}}={{1}\over{2}}\log\bigl(x^{2}+y^{2}\bigr)

with respect to xx, and obtain by the chain rule

11+y2/x2ddxyx=121x2+y2ddx(x2+y2){{1}\over{1+y^{2}/x^{2}}}{{d}\over{dx}}{{y}\over{x}}={{1}\over{2}}{{1}\over{x^% {2}+y^{2}}}{{d}\over{dx}}\bigl(x^{2}+y^{2}\bigr)
11+y2/x2xdydx-yx2=1x2+y2(x+ydydx){{1}\over{1+y^{2}/x^{2}}}{{x{{dy}\over{dx}}-y}\over{x^{2}}}={{1}\over{x^{2}+y^% {2}}}\Bigl(x+y{{dy}\over{dx}}\Bigr)

which reduces, when we multiply by x2+y2x^{2}+y^{2}, to

xdydx-y=x+ydydx,x{{dy}\over{dx}}-y=x+y{{dy}\over{dx}},
dydx=x+yx-y.{{dy}\over{dx}}={{x+y}\over{x-y}}.

Alternatively, we can introduce

f(x,y)=tan-1(y/x)-12log(x2+y2)-1f(x,y)=\tan^{-1}(y/x)-{{1}\over{2}}\log(x^{2}+y^{2})-1

and calculate the first-order partial derivatives

fx=11+y2/x2(-y/x)-xx2+y2=-y+xx2+y2,f_{x}={{1}\over{1+y^{2}/x^{2}}}\bigl(-y/x\bigr)-{{x}\over{x^{2}+y^{2}}}=-{{y+x% }\over{x^{2}+y^{2}}},
fy=11+y2/x2(1/x)-yx2+y2=x-yx2+y2;f_{y}={{1}\over{1+y^{2}/x^{2}}}\bigl(1/x\bigr)-{{y}\over{x^{2}+y^{2}}}={{x-y}% \over{x^{2}+y^{2}}};

hence

dydx=-fxfy=x+yx-y.{{dy}\over{dx}}=-{{f_{x}}\over{f_{y}}}={{x+y}\over{x-y}}.

W3.7.(i) When x=1x=1, we have 8y2=28y^{2}=2; so that y=±1/2y=\pm 1/2.

(ii) We assume that yy is defined implicitly as a function of xx and we differentiate the relation

8y2=x2(x+1)8y^{2}=x^{2}(x+1)

to obtain

16ydydx=2x(x+1)+x2=3x2+2x;16y{{dy}\over{dx}}=2x(x+1)+x^{2}=3x^{2}+2x;

hence

dydx=3x2+2x16y.{{dy}\over{dx}}={{3x^{2}+2x}\over{16y}}.

Alternatively, let f(x,y)=8y2-x2(x+1)f(x,y)=8y^{2}-x^{2}(x+1) so that fx=-2x(x+1)-x2f_{x}=-2x(x+1)-x^{2} and fy=16yf_{y}=16y; then

dydx=-fxfy=3x2+2x16y.{{dy}\over{dx}}=-{{f_{x}}\over{f_{y}}}={{3x^{2}+2x}\over{16y}}.

From the formula above, we see that the tangents to the curve have gradients

dydx={5/8,at(1,1/2);-5/8,at(1,-1/2).{{dy}\over{dx}}=\begin{cases}5/8,&at$(1,1/2)$;\cr-5/8,&at$(1,-1/2)$.\cr\end{cases}

For the equations of the tangents, we have:

y-12=58(x-1)andy-(-12)=-58(x-1)y-\frac{1}{2}=\frac{5}{8}\left(x-1\right)\;\;\mbox{and}\;\;y-(-\frac{1}{2})=-% \frac{5}{8}\left(x-1\right)

so we get the two lines y=±(58x-18)y=\pm\left(\frac{5}{8}x-\frac{1}{8}\right) at the respective points (1,±12)(1,\pm\frac{1}{2}).

W3.8. (i) We calculate the first-order partial derivatives of g(x,y)=x2-2xy+y3g(x,y)=x^{2}-2xy+y^{3} to be

gx=2x-2y, gy=-2x+3y2;{{\partial g}\over{\partial x}}=2x-2y,\quad{{\partial g}\over{\partial y}}=-2x% +3y^{2};

the second-order partial derivatives are

gxx=2, gyy=6y, gxy=-2.g_{xx}=2,\quad g_{yy}=6y,\quad g_{xy}=-2.

(ii) The stationary points occur where

2x-2y=0and-2x+3y2=0.2x-2y=0\quad{\hbox{and}}\quad-2x+3y^{2}=0.

From the first equation, we deduce that x=yx=y, so the second equation becomes -2x+3x2=0-2x+3x^{2}=0, or x(-2+3x)=0x(-2+3x)=0, with roots x=0x=0 and x=2/3x=2/3; hence the stationary points are

(0,0)and(2/3,2/3).(0,0)\quad{\hbox{and}}\quad(2/3,2/3).

(iii) The Hessian discriminant is

Δ=gxxgyy-gxy2=12y-4.\Delta=g_{xx}g_{yy}-g_{xy}^{2}=12y-4.

The stationary points are classified in the following table.

stationary pointΔgxxnature(0,0)-4<0*saddle(2/3,2/3)42>0local minimum\begin{matrix}{\hbox{stationary point}}&\Delta&g_{xx}&{\hbox{nature}}\cr(0,0)&% -4<0&*&{\hbox{saddle}}\cr(2/3,2/3)&4&2>0&{\hbox{local minimum}}\cr\end{matrix}

W3.9. (i) We have fx=1-yexf_{x}=1-ye^{x} and fy=3y2-exf_{y}=3y^{2}-e^{x}, so both partial derivatives are zero exactly when y=e-xy=e^{-x} and 3y2=ex3y^{2}=e^{x}. Multiplying, we obtain: y.3y2=e-x.ex=1y.3y^{2}=e^{-x}.e^{x}=1, hence y=133y=\frac{1}{\sqrt[3]{3}}. It follows that ex=3332=33e^{x}=\frac{3}{\sqrt[3]{3}^{2}}=\sqrt[3]{3}, so x=13log3x=\frac{1}{3}\log 3. Thus there is one stationary point (13log3,133)(\frac{1}{3}\log 3,\frac{1}{\sqrt[3]{3}}).

(ii) Here gx=y3-1(x+y)2g_{x}=y^{3}-\frac{1}{(x+y)^{2}} and gy=3xy2-1(x+y)2g_{y}=3xy^{2}-\frac{1}{(x+y)^{2}}, so if both partial derivatives are zero we must have y3=1(x+y)2=3xy2y^{3}=\frac{1}{(x+y)^{2}}=3xy^{2}, so y=3xy=3x. Substituting back into the equation y3=1(x+y)2y^{3}=\frac{1}{(x+y)^{2}}, we get 27x3=1(4x)227x^{3}=\frac{1}{(4x)^{2}}, so x5=127.16=1432x^{5}=\frac{1}{27.16}=\frac{1}{432}. Over {\mathbb{R}}, there is only one solution here: x=14325x=\frac{1}{\sqrt[5]{432}}, and so y=34325=9165y=\frac{3}{\sqrt[5]{432}}=\sqrt[5]{\frac{9}{16}}. Thus there is one turning point 14325(1,3)\frac{1}{\sqrt[5]{432}}(1,3).

(iii) Here hx=3x2-3y4h_{x}=3x^{2}-3y^{4} and hy=12y3-12xy3=12y3(1-x)h_{y}=12y^{3}-12xy^{3}=12y^{3}(1-x). Thus if hy=0h_{y}=0 then either y=0y=0 or x=1x=1; if hx=0h_{x}=0 then x2=y4x^{2}=y^{4}, so x=±y2x=\pm y^{2}. Combining these, if y=0y=0 and x2=y4x^{2}=y^{4} then x=y=0x=y=0; if x=1x=1 and x=±y2x=\pm y^{2} then y=±1y=\pm 1. Thus there are three stationary points: (0,0)(0,0), (1,1)(1,1) and (1,-1)(1,-1).

Showing existence of saddle points

i) In this case we have fxx=-yexf_{xx}=-ye^{x}, fxy=-exf_{xy}=-e^{x} and fyy=6yf_{yy}=6y so that Δ=fxxfyy-fxy2=-6y2ex-e2x\Delta=f_{xx}f_{yy}-f_{xy}^{2}=-6y^{2}e^{x}-e^{2x}. This is clearly negative for all values of x,yx,y so that any stationary point is a saddle point. (It only remains to recall that we found one stationary point for f(x,y)f(x,y).)

ii) We recall that g(x,y)g(x,y) has one stationary point 14325(1,3)\frac{1}{\sqrt[5]{432}}(1,3). In particular, y=3xy=3x at the stationary point. Now gxx=2(x+y)3g_{xx}=\frac{2}{(x+y)^{3}}, gxy=3y2+2(x+y)3g_{xy}=3y^{2}+\frac{2}{(x+y)^{3}}, gyy=6xy+2(x+y)3g_{yy}=6xy+\frac{2}{(x+y)^{3}}. If y=3xy=3x then we have gxx=264x3=132x3g_{xx}=\frac{2}{64x^{3}}=\frac{1}{32x^{3}}, gxy=27x2+132x3g_{xy}=27x^{2}+\frac{1}{32x^{3}} and gyy=18x2+132x3g_{yy}=18x^{2}+\frac{1}{32x^{3}}. Then

Δ=gxxgyy-gxy2=132x3(18x2+132x3)-(27x2+132x3)2=-729x4-98x.\Delta=g_{xx}g_{yy}-g_{xy}^{2}=\frac{1}{32x^{3}}(18x^{2}+\frac{1}{32x^{3}})-(2% 7x^{2}+\frac{1}{32x^{3}})^{2}=-729x^{4}-\frac{9}{8x}.

Thus Δ<0\Delta<0 for all x>0x>0, and in particular for the unique stationary point. Hence 14325(1,3)\frac{1}{\sqrt[5]{432}}(1,3) is a saddle point for g(x,y)g(x,y).

iii) Recall that h(x,y)h(x,y) has three stationary points: (0,0)(0,0), (1,1)(1,1) and (1,-1)(1,-1). We have hxx=6xh_{xx}=6x, hxy=-12y3h_{xy}=-12y^{3} and hyy=36y2(1-x)h_{yy}=36y^{2}(1-x). Therefore Δ=hxxhyy-hxy2=216xy2(1-x)-144y6\Delta=h_{xx}h_{yy}-h_{xy}^{2}=216xy^{2}(1-x)-144y^{6}. We have Δ=-144\Delta=-144 at the points (1,±1)(1,\pm 1) so that both of these are saddle points. (We have Δ=0\Delta=0 at the point (0,0)(0,0) (so that our existing methods do not allow us to determine the nature of this stationary point.)

W3.10. To find stationary points, we first look for simultaneous solutions of the equations fx=0f_{x}=0, fy=0f_{y}=0. Since

fx=4x3-4y,  andfy=4y3-4x\frac{\partial f}{\partial x}=4x^{3}-4y,\;\;\;\mbox{and}\;\;\;\frac{\partial f% }{\partial y}=4y^{3}-4x

the stationary points are the points (x,y)(x,y) satisfying x3=yx^{3}=y and y3=xy^{3}=x. Then y=x3=(y3)3=y9y=x^{3}=(y^{3})^{3}=y^{9}, so y=0,1y=0,1 or -1-1. Then in these three cases we have x=y3=0,1x=y^{3}=0,1 or -1-1. So there are three stationary points: (0,0)(0,0), (1,1)(1,1) and (-1,-1)(-1,-1). To determine what types these points are, we calculate the second order partial derivatives: we have

2fx2=12x2,  2fxy=-4and2fy2=12y2.\frac{\partial^{2}f}{\partial x^{2}}=12x^{2},\;\;\;\frac{\partial^{2}f}{% \partial x\partial y}=-4\;\;\;\mbox{and}\;\;\;\frac{\partial^{2}f}{\partial y^% {2}}=12y^{2}.

Thus Δ=144x2y2-16\Delta=144x^{2}y^{2}-16. In particular, at the points (1,1)(1,1) and (-1,-1)(-1,-1), Δ\Delta and fxxf_{xx} are positive; at (0,0)(0,0), Δ\Delta is negative. So (1,1)(1,1) and (-1,-1)(-1,-1) are local minima, while (0,0)(0,0) is a saddle point.