Home page for accesible maths 9 Workshop Solutions

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

9.1 Workshop Solutions 1

True or False? (i) The answer depends on whether we count roots with multiplicity or not. For example, if p(x)=(x-1)2(x2+1)p(x)=(x-1)^{2}(x^{2}+1) then pp has degree 4 and has one real root with multiplicity two. If we only count the number of distinct roots then n=4n=4, s=1s=1 and n-s=3n-s=3 is odd. If we consider p(x)p(x) to have two real roots (which happen to be equal) then n=4n=4, s=2s=2 and n-s=2n-s=2 is even.

In the general case, p(x)=(x-a1)(x-as)q1(x)qj(x)p(x)=(x-a_{1})\ldots(x-a_{s})q_{1}(x)\ldots q_{j}(x) as in slide 1.6 in the notes, and n=s+2jn=s+2j so n-sn-s is even.

(ii) False. For example, (x-1)3(x-1)^{3} has degree 3 but only one root (with multiplicity 3).

(iii) True. We complete the square, but first divide through by (-2)(-2) to obtain x2-3x+72x^{2}-3x+\frac{7}{2}, which equals (x-32)2+54(x-\frac{3}{2})^{2}+\frac{5}{4}.

(iv) False. We have 1-x2=cos2t1-x^{2}=\cos^{2}t so 1-x2=cos2t=|cost|\sqrt{1-x^{2}}=\sqrt{\cos^{2}t}=|\cos t|. For π2tπ\frac{\pi}{2}\leq t\leq\pi, cost\cos t is negative so |cost|=-cost|\cos t|=-\cos t in that range. Therefore 1-x2={cost0tπ2,-costπ2tπ.\sqrt{1-x^{2}}=\left\{\begin{array}[]{cc}\cos t&0\leq t\leq\frac{\pi}{2},\\ -\cos t&\frac{\pi}{2}\leq t\leq\pi.\end{array}\right.

W1.1 i) x-2x+4=x+4-6x+4=1-6x+4\frac{x-2}{x+4}=\frac{x+4-6}{x+4}=1-\frac{6}{x+4}.

ii) x2+xx-3=x(x-3)+4xx-3=x(x-3)+4(x-3)+12x-3=x+4+12x-3\frac{x^{2}+x}{x-3}=\frac{x(x-3)+4x}{x-3}=\frac{x(x-3)+4(x-3)+12}{x-3}=x+4+% \frac{12}{x-3}.

iii) x2-1x2+x+3=x2+x+3-(x+4)x2+x+3=1-x+4x2+x+3\frac{x^{2}-1}{x^{2}+x+3}=\frac{x^{2}+x+3-(x+4)}{x^{2}+x+3}=1-\frac{x+4}{x^{2}% +x+3}.

iv) x3-2x-1x2+2x+2=x(x2+2x+2)-2x2-4x-1x2+2x+2=x+-2(x2+2x+2)+3x2+2x+2=x-2+3x2+2x+2\frac{x^{3}-2x-1}{x^{2}+2x+2}=\frac{x(x^{2}+2x+2)-2x^{2}-4x-1}{x^{2}+2x+2}=x+% \frac{-2(x^{2}+2x+2)+3}{x^{2}+2x+2}=x-2+\frac{3}{x^{2}+2x+2}.

W1.2 i) Here the degree of the numerator is less than the degree of the denominator, so we don’t require a polynomial term. We have x2-x=x(x-1)x^{2}-x=x(x-1), so the required form of partial fractions is Ax+Bx-1\frac{A}{x}+\frac{B}{x-1}. Then

Ax+Bx-1=5x-3x(x-1)A(x-1)+Bx=5x-3.\frac{A}{x}+\frac{B}{x-1}=\frac{5x-3}{x(x-1)}\;\Leftrightarrow\;A(x-1)+Bx=5x-3.

In this case we have the easy trick of setting x=1x=1 to determine BB and x=0x=0 to find AA. When x=1x=1 we have B=2B=2, and when x=0x=0 we have -A=-3-A=-3, so A=3A=3.

ii) Once again we don’t require a polynomial term. We factorize x2-x-2=(x-2)(x+1)x^{2}-x-2=(x-2)(x+1) so the required form of partial fractions is Ax-2+Bx+1\frac{A}{x-2}+\frac{B}{x+1}. Then

6x-9x2-x-2=Ax-2+Bx+1A(x+1)+B(x-2)=6x-9A=1,B=5.\frac{6x-9}{x^{2}-x-2}=\frac{A}{x-2}+\frac{B}{x+1}\;\Leftrightarrow\;A(x+1)+B(% x-2)=6x-9\;\Leftrightarrow A=1,B=5.

iii) Again we don’t require a polynomial term. We factorize g(x)=x3+4x2+5x+2g(x)=x^{3}+4x^{2}+5x+2 by looking for roots. We have g(-1)=-1+4-5+2=0g(-1)=-1+4-5+2=0 so g(x)g(x) is divisible by x+1x+1. Now g(x)=(x+1)(x2+3x2+2x)g(x)=(x+1)(x^{2}+3x^{2}+2x). Finally, x2+3x+2x=(x+1)(x+2)x^{2}+3x+2x=(x+1)(x+2) so g(x)=(x+1)2(x+2)g(x)=(x+1)^{2}(x+2). Hence the required form of partial fractions is Ax+1+B(x+1)2+Cx+2\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{x+2}. Then

x2+5x+5x3+4x2+5x+2=Ax+1+B(x+1)2+Cx+2x2+5x+5=A(x+1)(x+2)+B(x+2)+C(x+1)2.\frac{x^{2}+5x+5}{x^{3}+4x^{2}+5x+2}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C% }{x+2}\;\Leftrightarrow\;x^{2}+5x+5=A(x+1)(x+2)+B(x+2)+C(x+1)^{2}.

We can carry out the trick of setting x=-1x=-1 and x=-2x=-2 to determine BB and CC, but this won’t be enough to tell us the value of AA. Setting x=-1x=-1 we obtain 1=B1=B, and setting x=-2x=-2 we have -1=C-1=C. Now we can subtract x+2x+2 from the left and right to get x2+4x+3=A(x+1)(x+2)-(x+1)2x^{2}+4x+3=A(x+1)(x+2)-(x+1)^{2}, and then we add (x+1)2(x+1)^{2} to the left and right to get 2x2+6x+4=A(x+1)(x+2)=A(x2+3x+2)2x^{2}+6x+4=A(x+1)(x+2)=A(x^{2}+3x+2), whence A=2A=2. Thus x2+5x+5x3+4x2+5x+2=2x+1+1(x+1)2-1x+2\frac{x^{2}+5x+5}{x^{3}+4x^{2}+5x+2}=\frac{2}{x+1}+\frac{1}{(x+1)^{2}}-\frac{1% }{x+2}.

iv) In this case degf=1<deg3=3\deg f=1<\deg 3=3, so there is no need to carry out polynomial long division. We first have to factorize the denominator. We observe that g(2)=8-8+8-8=0g(2)=8-8+8-8=0, so g(x)g(x) is divisible by (x-2)(x-2). We have g(x)=(x-2)(x2+4)g(x)=(x-2)(x^{2}+4).

To carry out the partial fractions step, we want to express f(x)/g(x)f(x)/g(x) as Ax-2+Bx+Cx2+4\frac{A}{x-2}+\frac{Bx+C}{x^{2}+4}. Multiplying through by g(x)g(x), we have A(x2+4)+(Bx+C)(x-2)=2x-20A(x^{2}+4)+(Bx+C)(x-2)=2x-20. We can evaluate at x=2x=2 to obtain 8A=-168A=-16 and hence A=-2A=-2. However, it isn’t a good idea to try to obtain the coefficients B,CB,C by evaluating at ±2i\pm 2{\rm i}. There are two ways of finding B,CB,C. The standard approach is to collect the terms on the left-hand side to obtain: (A+B)x2+(C-2B)x+(4A-2C)=2x-20(A+B)x^{2}+(C-2B)x+(4A-2C)=2x-20. Then A+B=0A+B=0, so B=-A=2B=-A=2, and C-2B=2C-2B=2, so C=2+2B=6C=2+2B=6.

An alternative “trick” method is to substract A(x2+4)A(x^{2}+4) from both sides of the equation to obtain: (Bx+C)(x-2)=2x-20+2(x2+4)=2x2+2x-12(Bx+C)(x-2)=2x-20+2(x^{2}+4)=2x^{2}+2x-12. Then 2x2+2x-12=2(x2+x-6)=2(x+3)(x-2)2x^{2}+2x-12=2(x^{2}+x-6)=2(x+3)(x-2) and hence, dividing both sides by (x-2)(x-2), we obtain Bx+C=2x+6Bx+C=2x+6.

The answer (by either method) is therefore 2x+6x2+4-2x-2\frac{2x+6}{x^{2}+4}-\frac{2}{x-2}.

v) Here degf=degg\deg f=\deg g, so we need to carry out polynomial division before the partial fractions step. We have x3+3x2-x-14=x3+3x2+2x-6-(3x+8)x^{3}+3x^{2}-x-14=x^{3}+3x^{2}+2x-6-(3x+8), so x3+3x2-x-14x3+3x2+2x-6=1-3x+8x3+3x2+2x-6\frac{x^{3}+3x^{2}-x-14}{x^{3}+3x^{2}+2x-6}=1-\frac{3x+8}{x^{3}+3x^{2}+2x-6}. Now we factorize g(x)=x3+3x2+2x-6g(x)=x^{3}+3x^{2}+2x-6. We have g(1)=0g(1)=0 so g(x)g(x) is divisible by (x-1)(x-1). Then g(x)=(x-1)(x2+4x+6)g(x)=(x-1)(x^{2}+4x+6). We now observe that x2+4x+6=(x+2)2+2x^{2}+4x+6=(x+2)^{2}+2 is irreducible. Thus the required form of partial fractions is Ax-1+Bx+Cx2+4x+6\frac{A}{x-1}+\frac{Bx+C}{x^{2}+4x+6}. Then

3x+8x3+3x2+2x-6=Ax-1+Bx+Cx2+4x+6 3x+8=A(x2+4x+6)+(Bx+C)(x-1).\frac{3x+8}{x^{3}+3x^{2}+2x-6}=\frac{A}{x-1}+\frac{Bx+C}{x^{2}+4x+6}\;% \Leftrightarrow\;3x+8=A(x^{2}+4x+6)+(Bx+C)(x-1).

Now we can carry out the trick of setting x=1x=1 to obtain 11=11A11=11A and hence A=1A=1. Using the standard method (equating coefficients) to find B,CB,C, we have 3x+8=(A+B)x2+(4A+C-B)x+(6A-C)3x+8=(A+B)x^{2}+(4A+C-B)x+(6A-C), and hence A+B=0A+B=0, 4A+C-B=34A+C-B=3 and 6A-C=86A-C=8. Since A=1A=1, we obtain B=-1B=-1 and hence C=3-4A+B=-2C=3-4A+B=-2. With the trick method, we subtract x2+4x+6x^{2}+4x+6 from both sides to obtain -x2-x-2=(Bx+C)(x-1)-x^{2}-x-2=(Bx+C)(x-1) and hence, dividing by (x-1)(x-1), we have Bx+C=-x-2Bx+C=-x-2.

The answer to the question is therefore 1-1x-1+x+2x2+4x+61-\frac{1}{x-1}+\frac{x+2}{x^{2}+4x+6}.

W1.3 i) We have x+3(x-1)2=x-1+4(x-1)2=1x-1+4(x-1)2\frac{x+3}{(x-1)^{2}}=\frac{x-1+4}{(x-1)^{2}}=\frac{1}{x-1}+\frac{4}{(x-1)^{2}}. Hence the integral is log|x-1|-4x-1+c\log|x-1|-\frac{4}{x-1}+c.

ii) We make the substitution x=3tantx=3\tan t, so that dxdt=3sec2t\frac{dx}{dt}=3\sec^{2}t, and x2+9=9(1+tan2t)=9sec2tx^{2}+9=9(1+\tan^{2}t)=9\sec^{2}t. So

dxx2+9=dxdtdt9sec2t=13dt=t3+c=13tan-1x3+c.\int\frac{dx}{x^{2}+9}=\int\frac{\frac{dx}{dt}\,dt}{9\sec^{2}t}=\frac{1}{3}% \int\,dt=\frac{t}{3}+c=\frac{1}{3}\tan^{-1}\frac{x}{3}+c.

(Alternatively, we can just remember the fact that dxx2+a2=1atan-1xa+c\int\frac{dx}{x^{2}+a^{2}}=\frac{1}{a}\tan^{-1}\frac{x}{a}+c.)

iii) We separate the numerator into the xx term and the constant term, so we have to integrate 4xx2+1\frac{4x}{x^{2}+1} and 9x2+1\frac{9}{x^{2}+1} separately. For the first term we make the substitution u=x2+1u=x^{2}+1, so that dudx=2x\frac{du}{dx}=2x and so we have 4xdxx2+1=2duu=2log|u|+c=2log(x2+1)+c\int\frac{4x\,dx}{x^{2}+1}=\int\frac{2\,du}{u}=2\log|u|+c=2\log(x^{2}+1)+c. The second term is 9tan-1x9\tan^{-1}x. (This is more or less standard, or one can make the substitution x=tantx=\tan t.)

iv) Once again we separate the numerator, so we have to separately integrate xx2+3\frac{x}{x^{2}+3} and 2x2+3\frac{2}{x^{2}+3}. For the first term, we substitute u=x2+3u=x^{2}+3, to obtain xdxx2+3=12log(x2+3)+c\int\frac{x\,dx}{x^{2}+3}=\frac{1}{2}\log(x^{2}+3)+c. For the second term, we substitute x=3tantx=\sqrt{3}\tan t, or we remember the integral of 1x2+a2\frac{1}{x^{2}+a^{2}} with a=3a=\sqrt{3}. Then we obtain 2x2+3=23tan-1x3+c\int\frac{2}{x^{2}+3}=\frac{2}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}}+c^{\prime}. Then

x+2x2+3dx=12log(x2+3)+23tan-1x3+c.\int\frac{x+2}{x^{2}+3}\,dx=\frac{1}{2}\log(x^{2}+3)+\frac{2}{\sqrt{3}}\tan^{-% 1}\frac{x}{\sqrt{3}}+c.

W1.4 i) By our answer to W1.2(i), we have 5x-3x2-xdx=3dxx+2dxx-1=3log|x|+2log|x-1|+c=log(|x3(x-1)2|)+c\int\frac{5x-3}{x^{2}-x}\,dx=\int\frac{3\,dx}{x}+\int\frac{2\,dx}{x-1}=3\log|x% |+2\log|x-1|+c=\log(|x^{3}(x-1)^{2}|)+c.

ii) Using our answer above, we have 6x-9x2-x-2dx=dxx-2+5dxx+1=log|x-2|+5log|x+1|+c=log|(x-2)(x+1)5|+c\int\frac{6x-9}{x^{2}-x-2}dx=\int\frac{dx}{x-2}+\int\frac{5\,dx}{x+1}=\log|x-2% |+5\log|x+1|+c=\log|(x-2)(x+1)^{5}|+c

iii) We have x2+5x+5x3+4x2+5x+2dx=2dxx+1+dx(x+1)2-dxx+2=2log|x+1|-1x+1-log|x+2|+c=log|(x+1)2x+2|-1x+1+c\int\frac{x^{2}+5x+5}{x^{3}+4x^{2}+5x+2}\,dx=\int\frac{2\,dx}{x+1}+\int\frac{% dx}{(x+1)^{2}}-\int\frac{dx}{x+2}=2\log|x+1|-\frac{1}{x+1}-\log|x+2|+c=\log% \left|\frac{(x+1)^{2}}{x+2}\right|-\frac{1}{x+1}+c.

iv) By our answer to 1.2(iv), we have 2x-20x3-2x2+4x-8dx=2x+6x2+4dx-2dxx-2\int\frac{2x-20}{x^{3}-2x^{2}+4x-8}\,dx=\int\frac{2x+6}{x^{2}+4}\,dx-\frac{2\,% dx}{x-2}. To integrate 2xx2+4\frac{2x}{x^{2}+4} we substitute u=x2+4u=x^{2}+4, hence dudx=2x\frac{du}{dx}=2x and so 2xdxx2+4=duu=log|u|+c=log(x2+4)+c\int\frac{2x\,dx}{x^{2}+4}=\int\frac{du}{u}=\log|u|+c=\log(x^{2}+4)+c. To integrate 6x2+4\frac{6}{x^{2}+4}, we substitute x=2tantx=2\tan t, hence dxdt=2sec2t\frac{dx}{dt}=2\sec^{2}t and x2+4=4(tan2t+1)=4sec2tx^{2}+4=4(\tan^{2}t+1)=4\sec^{2}t. Thus 6dxx2+4=12sec2tdt4sec2t=3dt=3t+c=3tan-1(x2)+c\int\frac{6\,dx}{x^{2}+4}=\int\frac{12\sec^{2}t\,dt}{4\sec^{2}t}=3\int\,dt=3t+% c^{\prime}=3\tan^{-1}\left(\frac{x}{2}\right)+c^{\prime}. Finally, we can immediately integrate 2x-2\frac{2}{x-2} to obtain 2log|x-2|+c′′2\log|x-2|+c^{\prime\prime}. Summing all of the terms together, we have:

2x-20x3-2x2+4x-8dx=log(x2+4)+3tan-1(x2)-2log|x-2|+C.\int\frac{2x-20}{x^{3}-2x^{2}+4x-8}\,dx=\log(x^{2}+4)+3\tan^{-1}\left(\frac{x}% {2}\right)-2\log|x-2|+C.

v) We have x3+3x2-x-14x3+3x2+2x-6dx=1dx-dxx-1+x+2x2+4x+6dx=x-log|x-1|+x+2x2+4x+6dx\int\frac{x^{3}+3x^{2}-x-14}{x^{3}+3x^{2}+2x-6}dx=\int 1\,dx-\int\frac{dx}{x-1% }+\int\frac{x+2}{x^{2}+4x+6}\,dx=x-\log|x-1|+\int\frac{x+2}{x^{2}+4x+6}dx. To obtain the final integral, we substitute u=x2+4x+6u=x^{2}+4x+6. Then dudx=2x+4\frac{du}{dx}=2x+4 and therefore x+2x2+4x+6dx=12duu=log|u|+c\int\frac{x+2}{x^{2}+4x+6}dx=\frac{1}{2}\int\frac{du}{u}=\log|u|+c. Then

x3+3x2-x-14x3+3x2+2x-6dx=x-log|x-1|+12log(x2+4x+6)+c=x+12log(x2+4x+6(x-1)2)+c.\int\frac{x^{3}+3x^{2}-x-14}{x^{3}+3x^{2}+2x-6}dx=x-\log|x-1|+\frac{1}{2}\log(% x^{2}+4x+6)+c=x+\frac{1}{2}\log\left(\frac{x^{2}+4x+6}{(x-1)^{2}}\right)+c.

W1.5. i) First we factorize the denominator x3-x2-8x+12x^{3}-x^{2}-8x+12. By considering factors of 1212, we spot 22 as a root, and then proceed to factorize

x3-x2-8x+12=(x-2)(x2+x-6)=(x-2)(x-2)(x+3)=(x-2)2(x+3);{x^{3}-x^{2}-8x+12=(x-2)(x^{2}+x-6)=(x-2)(x-2)(x+3)=(x-2)^{2}(x+3);}

so the partial fractions have the form

2x2+7(x-2)2(x+3)=Ax-2+B(x-2)2+Cx+3=A(x-2)(x+3)+B(x+3)+C(x-2)2(x-2)2(x+3){{2x^{2}+7}\over{(x-2)^{2}(x+3)}}={A\over{x-2}}+{B\over{(x-2)^{2}}}+{C\over{x+% 3}}={{A(x-2)(x+3)+B(x+3)+C(x-2)^{2}}\over{(x-2)^{2}(x+3)}}

and hence

A(x2+x-6)+B(x+3)+C(x2-4x+4)=2x2+7.A(x^{2}+x-6)+B(x+3)+C(x^{2}-4x+4)=2x^{2}+7.

We can find two of these values by setting x=2x=2 and x=-3x=-3: in the former case we obtain 5B=155B=15 so B=3B=3, and in the latter case we obtain 25C=2525C=25 so C=1C=1. To obtain the value of AA we inspect the constant term: -6A+3B+4C=7-6A+3B+4C=7 so -6A=-6-6A=-6 and hence A=1A=1.

Therefore

2x2+7x3-x2-8x+12=1x-2+3(x-2)2+1x+3{{{2x^{2}+7}\over{x^{3}-x^{2}-8x+12}}={{1}\over{x-2}}+{{3}\over{(x-2)^{2}}}+{{% 1}\over{x+3}}}

and the reqired integral is

2x2+7x3-x2-8x+12dx=1x-2dx+3(x-2)2dx+1x+3dx\int{{2x^{2}+7}\over{x^{3}-x^{2}-8x+12}}\,dx=\int{{1}\over{x-2}}dx+\int{{3}% \over{(x-2)^{2}}}dx+\int{{1}\over{x+3}}dx
=log|x-2|-3x-2+log|x+3|+K,=\log|x-2|-{{3}\over{x-2}}+\log|x+3|+K,

for some constant KK.

ii) In this exercise we have to carry out all of the steps (a)-(e) in slide 1.25.

a) We first use division of polynomials to express the rational function x3-2x3-x2+4x-4{{x^{3}-2}\over{x^{3}-x^{2}+4x-4}} as a sum of a polynomial and a rational function f(x)g(x)\frac{f(x)}{g(x)} with degf<degg\deg f<\deg g. In this case this step is rather easy, we have:

x3-2x3-x2+4x-4=x3-x2+4x-4+(x2-4x+2)x3-x2+4x-4=1+x2-4x+2x3-x2+4x-4.{{x^{3}-2}\over{x^{3}-x^{2}+4x-4}}={{x^{3}-x^{2}+4x-4+(x^{2}-4x+2)}\over{x^{3}% -x^{2}+4x-4}}=1+\frac{x^{2}-4x+2}{x^{3}-x^{2}+4x-4}.

b) Now we factorize the denominator g(x)=x3-x2+4x-4g(x)=x^{3}-x^{2}+4x-4. We spot that 11 is a root, so (x-1)(x-1) divides g(x)g(x); then g(x)=(x-1)(x2+4)g(x)=(x-1)(x^{2}+4).

c) To proceed, we have to express x2-4x+2(x-1)(x2+4)\frac{x^{2}-4x+2}{(x-1)(x^{2}+4)} in the form Ax-1+Bx+Cx2+4\frac{A}{x-1}+\frac{Bx+C}{x^{2}+4}. Then we have

x2-4x+2=A(x2+4)+(Bx+C)(x-1)(A+B)x2+(C-B)x+(4A-C)=x2-4x+2.x^{2}-4x+2=A(x^{2}+4)+(Bx+C)(x-1)\;\Rightarrow(A+B)x^{2}+(C-B)x+(4A-C)=x^{2}-4% x+2.

We can obtain the value of AA by setting x=1x=1, but this method is not helpful for (directly) obtaining the values of BB and CC. Setting x=1x=1 we have 5A=-15A=-1 and so A=-15A=\frac{-1}{5}. Now A+B=1A+B=1, so B=65B=\frac{6}{5}. Finally, C-B=-4C-B=-4 and so C=B-4=-145C=B-4=\frac{-14}{5}. (It is a good idea to check the linear term: we have 4A-C=-45+145=24A-C=\frac{-4}{5}+\frac{14}{5}=2 as required.) Thus x3-2x3-x2+4x-4dx=dx-15dxx-1+65x-145x2+4dx\int{{x^{3}-2}\over{x^{3}-x^{2}+4x-4}}dx=\int dx-\frac{1}{5}\int\frac{dx}{x-1}% +\int\frac{\frac{6}{5}x-\frac{14}{5}}{x^{2}+4}dx.

d) There is one linear factor (x-1)(x-1), and the integral -15dxx-1=-15log|x-1|+c\frac{-1}{5}\int\frac{dx}{x-1}=\frac{-1}{5}\log|x-1|+c.

e) The general method for dealing with integrals such as 6x-14x2+4dx\int\frac{6x-14}{x^{2}+4}dx is outlined in slides 1.16-17 and demonstrated in slides 1.21-24. We first account for the linear term (6x6x) in the numerator by considering the substitution u=x2+4u=x^{2}+4, whence dudx=2x\frac{du}{dx}=2x and so

6xdxx2+4=3duu=3log|u|+c=3log(x2+4)+c.\int\frac{6x\,dx}{x^{2}+4}=3\int\frac{du}{u}=3\log|u|+c^{\prime}=3\log(x^{2}+4% )+c^{\prime}.

For the term -14x2+4\frac{-14}{x^{2}+4} we make the substitution x=2tantx=2\tan t (or we remember the standard answer as above) to obtain -14dxx2+4=-7tan-1x2+c′′\int\frac{-14\,dx}{x^{2}+4}=-7\tan^{-1}\frac{x}{2}+c^{\prime\prime}. Putting all of the different bits together, we obtain:

x3-2x3+3x2+7x+5dx=x-15log|x-1|+35log(x2+4)-75tan-1(x2)+c.\int{{x^{3}-2}\over{x^{3}+3x^{2}+7x+5}}dx=x-\frac{1}{5}\log|x-1|+\frac{3}{5}% \log(x^{2}+4)-\frac{7}{5}\tan^{-1}\left(\frac{x}{2}\right)+c.

W1.6 i) We observe that the coefficients of the the polynomial are real, so 1-3i1-3{\rm i} is also a root by Lemma 1.5 in the notes; hence

(z-1+3i)(z-1-3i)=(z-1)2+9=z2-2z+10(z-1+3{\rm i})(z-1-3{\rm i})=(z-1)^{2}+9=z^{2}-2z+10

is a factor. We write

z4-6z3+26z2-56z+80=(z2-2z+10)(z2+az+b)z^{4}-6z^{3}+26z^{2}-56z+80=(z^{2}-2z+10)(z^{2}+az+b)

where a,ba,b\in{\mathbb{R}}. Since the constant term 10b=8010b=80, we must have b=8b=8. Now the coefficient of zz is 10a-2b=10a-16=-5610a-2b=10a-16=-56, so a=-4a=-4. Now z2-4z+8=0z^{2}-4z+8=0 has roots

z=4±16-322=2±-4;z={{4\pm\sqrt{16-32}}\over{2}}=2\pm\sqrt{-4};

so a complete list of the roots is

1+3i,1-3i,2+2i,2-2i.1+3{\rm i},1-3{\rm i},2+2{\rm i},2-2{\rm i}.

ii) Since the roots of the polynomials x2-2x+10x^{2}-2x+10 and x2-4x+8x^{2}-4x+8 are not real, they are both irreducible real polynomials, so the required factorization is f(x)=(x2-2x+10)(x2-4x+8)f(x)=(x^{2}-2x+10)(x^{2}-4x+8).

iii) We want to write 26f(x)\frac{26}{f(x)} as

26f(x)=αx+βx2-2x+10+γx+δx2-4x+8.\frac{26}{f(x)}=\frac{\alpha x+\beta}{x^{2}-2x+10}+\frac{\gamma x+\delta}{x^{2% }-4x+8}.

Multiplying through by f(x)f(x), we obtain:

26=(αx+β)(x2-4x+8)+(γx+δ)(x2-2x+10)26=(\alpha x+\beta)(x^{2}-4x+8)+(\gamma x+\delta)(x^{2}-2x+10)
=(α+γ)x3+(β+δ-4α-2γ)x2+(8α+10γ-4β-2δ)x+(8β+10δ).=(\alpha+\gamma)x^{3}+(\beta+\delta-4\alpha-2\gamma)x^{2}+(8\alpha+10\gamma-4% \beta-2\delta)x+(8\beta+10\delta).

Thus γ=-α\gamma=-\alpha by looking at the coefficient of x3x^{3}. Substituting -α-\alpha for γ\gamma, the coefficient of x2x^{2} becomes β+δ-2α=0\beta+\delta-2\alpha=0, so δ=2α-β\delta=2\alpha-\beta. Now we substitute into the coefficient of xx and obtain 8α-10α-4β-4α+2β=08\alpha-10\alpha-4\beta-4\alpha+2\beta=0, so -6α-2β=0-6\alpha-2\beta=0. Therefore β=-3α\beta=-3\alpha and δ=5α\delta=5\alpha. Now 8β+10δ=-24α+50α=26α8\beta+10\delta=-24\alpha+50\alpha=26\alpha, so α=1\alpha=1. Thus the required expression is

x-3x2-2x+10+5-xx2-4x+8.\frac{x-3}{x^{2}-2x+10}+\frac{5-x}{x^{2}-4x+8}.

iv) Using the partial fractions from the previous part, we have

26f(x)dx=x-3x2-2x+10dx+5-xx2-4x+8dx.\int\!\frac{26}{f(x)}dx=\int\!\frac{x-3}{x^{2}-2x+10}dx+\int\!\frac{5-x}{x^{2}% -4x+8}dx.

For the first of these integrals, Q(x)=x2-2x+10Q(x)=x^{2}-2x+10 and so we substitute s=x-1s=x-1 to get x-3x2-2x+10=s-2s2+9\frac{x-3}{x^{2}-2x+10}=\frac{s-2}{s^{2}+9}. Clearly dxds=1\frac{dx}{ds}=1 and so the first integral becomes

s-2s2+9ds=12sdss2+9-2dss2+9=12log(s2+9)-23tan-1s3+c\int\frac{s-2}{s^{2}+9}\,ds=\frac{1}{2}\int\frac{s\,ds}{s^{2}+9}-\frac{2\,ds}{% s^{2}+9}=\frac{1}{2}\log(s^{2}+9)-\frac{2}{3}\tan^{-1}\frac{s}{3}+c

where the last equality follows by making two separate substitutions (u=s2+9u=s^{2}+9 and s=3tants=3\tan t respectively). We need to express this in terms of xx: hence we have x-3x2-2x+10dx=12log(x2-2x+10)-23tan-1(x-13)+c\int\frac{x-3}{x^{2}-2x+10}\,dx=\frac{1}{2}\log(x^{2}-2x+10)-\frac{2}{3}\tan^{% -1}\left(\frac{x-1}{3}\right)+c.

For the second integral, we have Q(x)=x2-4x+8Q(x)=x^{2}-4x+8 and so we first make the substitution s=x-2s=x-2. Then Q(x)=s2+4Q(x)=s^{2}+4 and so 5-xx2-4x+8=3-ss2+4\frac{5-x}{x^{2}-4x+8}=\frac{3-s}{s^{2}+4}. Hence we have

5-xx2-4x+8dx=3dss2+4-sdss2+4=32tan-1s2-12log(s2+4)+c\int\frac{5-x}{x^{2}-4x+8}\,dx=\int\frac{3\,ds}{s^{2}+4}-\frac{s\,ds}{s^{2}+4}% =\frac{3}{2}\tan^{-1}\frac{s}{2}-\frac{1}{2}\log(s^{2}+4)+c^{\prime}

Expressing this in terms of xx and putting everything together, we have

26f(x)dx=12log(x2-2x+10)-23tan-1(x-13)-12log(x2-4x+8)+32tan-1(x-22)+c\int\!\frac{26}{f(x)}\,dx=\frac{1}{2}\log(x^{2}-2x+10)-\frac{2}{3}\tan^{-1}% \left(\frac{x-1}{3}\right)-\frac{1}{2}\log(x^{2}-4x+8)+\frac{3}{2}\tan^{-1}% \left(\frac{x-2}{2}\right)+c
=12log(x2-2x+10x2-4x+8)+32tan-1(x-22)-23tan-1(x-13)+c.=\frac{1}{2}\log\left(\frac{x^{2}-2x+10}{x^{2}-4x+8}\right)+\frac{3}{2}\tan^{-% 1}\left(\frac{x-2}{2}\right)-\frac{2}{3}\tan^{-1}\left(\frac{x-1}{3}\right)+c.

W1.7. See frame 1.26 for details on this substitution. We have t=tanx2t=\tan\frac{x}{2} so

dtdx=12sec2x2=12(1+tan2x2)=1+t22,\frac{dt}{dx}=\frac{1}{2}\sec^{2}\frac{x}{2}=\frac{1}{2}\left(1+\tan^{2}\frac{% x}{2}\right)=\frac{1+t^{2}}{2},

and cosx=1-t21+t2\cos x=\frac{1-t^{2}}{1+t^{2}}, and the limits change as: t=0t=0 when x=0x=0; t=1t=1 when x=π2x=\frac{\pi}{2}. Thus

0π2dx5+4cosx=012dt5(1+t2)+4(1-t2)=012dt9+t2.\int_{0}^{\frac{\pi}{2}}{{dx}\over{5+4\cos x}}=\int_{0}^{1}{{2dt}\over{5(1+t^{% 2})+4(1-t^{2})}}=\int_{0}^{1}{{2dt}\over{9+t^{2}}}.

To determine the last integral we substitute t=3tanut=3\tan u so that 9+t2=9+9tan2u=9sec2u9+t^{2}=9+9\tan^{2}u=9\sec^{2}u. Then dtdu=3sec2u\frac{dt}{du}=3\sec^{2}u and the limits change as: u=0u=0 when t=0t=0 and u=tan-1(13)u=\tan^{-1}\left(\frac{1}{3}\right) when t=1t=1. Thus

012dt9+t2=0tan-1(13)6sec2udu9sec2u=23tan-1(13).\int_{0}^{1}{{2\,dt}\over{9+t^{2}}}=\int_{0}^{\tan^{-1}\left(\frac{1}{3}\right% )}{{6\sec^{2}u\,du}\over{9\sec^{2}u}}={{2}\over{3}}\tan^{-1}\left(\frac{1}{3}% \right).

W1.8. i) (See 1.32 in the notes for this substitution.) We substitute u=2x+3u=2x+3, so that dudx=2\frac{du}{dx}=2 and hence (2x+3)3/2dx=12u3/2du=1225u5/2+c=15(2x+3)5/2+c\int(2x+3)^{3/2}\,dx=\frac{1}{2}\int u^{3/2}\,du=\frac{1}{2}\cdot\frac{2}{5}u^% {5/2}+c=\frac{1}{5}(2x+3)^{5/2}+c.

ii) (See 1.37 and 1.40 in the notes.) For this case we can either substitute x=2tantx=2\tan t or x=2sinhtx=2\sinh t. We choose the latter, so we have dxdt=2cosht\frac{dx}{dt}=2\cosh t and x2+4=4sinh2t+4=4cosh2t=2cosht\sqrt{x^{2}+4}=\sqrt{4\sinh^{2}t+4}=\sqrt{4\cosh^{2}t}=2\cosh t. (This is true since cosht\cosh t is always positive.) Now dxx2+4=2coshtdt2cosht=t+c=sinh-1(x2)+c\int\frac{dx}{\sqrt{x^{2}+4}}=\int\frac{2\cosh t\,dt}{2\cosh t}=t+c=\sinh^{-1}% \left(\frac{x}{2}\right)+c.

iii) (This is a bit of a trick question: we notice that the numerator is of the form f(x)dxf^{\prime}(x)\,dx, where the denominator is f(x)\sqrt{f(x)}. You should keep your eyes peeled for integrals of this form.) We set u=x2-4u=x^{2}-4, then dudx=2x\frac{du}{dx}=2x and hence 2xdxx2-4=u-1/2du=2u1/2+c=2x2-4+c\int\frac{2x\,dx}{\sqrt{x^{2}-4}}=\int u^{-1/2}{du}=2u^{1/2}+c=2\sqrt{x^{2}-4}+c.

W1.9. (i) Let x=tanux=\tan u, so that dxdu=sec2u{{dx}\over{du}}=\sec^{2}u and 1+x2=1+tan2u=sec2u1+x^{2}=1+\tan^{2}u=\sec^{2}u. The limits of integration change as

x|03u|0π/3\begin{matrix}x&|\quad 0&\sqrt{3}\cr u&|\quad 0&\pi/3\end{matrix}

Hence

03dx1+x2=0π/3sec2usec2udu=0π/3du=π/3.{\int_{0}^{\sqrt{3}}{{dx}\over{1+x^{2}}}=\int_{0}^{\pi/3}{{\sec^{2}u}\over{% \sec^{2}u}}du=\int_{0}^{\pi/3}du=\pi/3.}

(ii) Again, we let x=tanux=\tan u, so that dxdu=sec2u{{dx}\over{du}}=\sec^{2}u and 1+x2=1+tan2u=sec2u.1+x^{2}=1+\tan^{2}u=\sec^{2}u. The limits of integration change as

x|1/31u|π/6π/4\begin{matrix}x&|&1/\sqrt{3}&1\cr u&|&\pi/6&\pi/4\end{matrix}

Hence

1/31dx(1+x2)2=π/6π/4sec2usec4udu=π/6π/4dusec2u=π/6π/4cos2udu\int^{1}_{1/\sqrt{3}}{{dx}\over{(1+x^{2})^{2}}}=\int^{\pi/4}_{\pi/6}{{\sec^{2}% u}\over{\sec^{4}u}}du=\int_{\pi/6}^{\pi/4}{{du}\over{\sec^{2}u}}=\int_{\pi/6}^% {\pi/4}\cos^{2}u\,du
=12π/6π/4(cos2u+1)du=12[12sin2u+u]π/6π/4=12(12sinπ2+π4-12sinπ3-π6)={{1}\over{2}}\int_{\pi/6}^{\pi/4}(\cos 2u+1)\,du={{1}\over{2}}\Bigl[{{1}\over% {2}}\sin 2u+u\Bigr]_{\pi/6}^{\pi/4}=\frac{1}{2}\left(\frac{1}{2}\sin\frac{\pi}% {2}+\frac{\pi}{4}-\frac{1}{2}\sin\frac{\pi}{3}-\frac{\pi}{6}\right)
=12(12-34+π12)=2-38+π24.=\frac{1}{2}\left(\frac{1}{2}-\frac{\sqrt{3}}{4}+\frac{\pi}{12}\right)=\frac{2% -\sqrt{3}}{8}+\frac{\pi}{24}.

(iii) In this integral we get rid of x1/2x^{1/2} by making the substitution u=x1/2u=x^{1/2}; that is, x=u2x=u^{2}, so dxdu=2u{{dx}\over{du}}=2u and change the limits to

x|13u|13.\begin{matrix}x&|&1&3\cr u&|&1&\sqrt{3}.\end{matrix}

Then the integral to consider is

13dx(1+x)x1/2=132udu(1+u2)u=213du1+u2=[2tan-1u]13\int_{1}^{3}{{dx}\over{(1+x)x^{1/2}}}=\int_{1}^{\sqrt{3}}{{2u\,du}\over{(1+u^{% 2})u}}=2\int_{1}^{\sqrt{3}}{{du}\over{1+u^{2}}}=\bigl[2\tan^{-1}u\Bigr]_{1}^{% \sqrt{3}}

=2tan-13-2tan-11=2π3-2π4=π6=2\tan^{-1}\sqrt{3}-2\tan^{-1}1=2\frac{\pi}{3}-2\frac{\pi}{4}=\frac{\pi}{6}. Hence

13dx(1+x)x1/2=π6.\int_{1}^{3}{{dx}\over{(1+x)x^{1/2}}}={{\pi}\over{6}}.

(iv) To determine this integral we substitute x=2sintx=2\sin t or x=2costx=2\cos t. (Note that either choice gives a useful simplification of the term 4-x2\sqrt{4-x^{2}}.) If we set x=2sintx=2\sin t then we have dxdt=2cost\frac{dx}{dt}=2\cos t and 4-x2=4-4sin2t=4cos2t=|2cost|\sqrt{4-x^{2}}=\sqrt{4-4\sin^{2}t}=\sqrt{4\cos^{2}t}=|2\cos t|. The range of integration is 0x10\leq x\leq 1, hence 0sint120\leq\sin t\leq\frac{1}{2} which corresponds to 0tπ60\leq t\leq\frac{\pi}{6}. Thus 01dx4-x2=0π/62costdt|2cost|\int_{0}^{1}\frac{dx}{\sqrt{4-x^{2}}}=\int_{0}^{\pi/6}\frac{2\cos t\,dt}{|2% \cos t|}. In this range of values of tt we have 1cost321\geq\cos t\geq\frac{\sqrt{3}}{2} and so in particular cost>0\cos t>0, so |cost|=cost|\cos t|=\cos t. Therefore 0π/62costdt|2cost|=0π/6dt=π/6\int_{0}^{\pi/6}\frac{2\cos t\,dt}{|2\cos t|}=\int_{0}^{\pi/6}dt=\pi/6.

(v) For this part we set x=coshtx=\cosh t. Then x2-1=cosh2t-1=sinh2tx^{2}-1=\cosh^{2}t-1=\sinh^{2}t. Also, since 1<a<b1<a<b then the region a<x<ba<x<b corresponds to α=cosh-1a<t<cosh-1b=β\alpha=\cosh^{-1}a<t<\cosh^{-1}b=\beta. Now tt is positive throughout this interval, so sinht\sinh t is positive too and hence x2-1=sinh2t=sinht\sqrt{x^{2}-1}=\sqrt{\sinh^{2}t}=\sinh t. Finally, dxdt=sinht\frac{dx}{dt}=\sinh t, so the integral is αβsinht.sinhtdt=αβsinh2tdt\int_{\alpha}^{\beta}\sinh t.\sinh t\,dt=\int_{\alpha}^{\beta}\sinh^{2}t\,dt. To find this integral we use the equality sinh2t=12(cosh2t-1)\sinh^{2}t=\frac{1}{2}(\cosh 2t-1). Thus

abx2-1dx=12αβ(cosh2t-1)dt=12[12sinh2t-t]αβ=12[sinhtcosht-t]αβ.\int_{a}^{b}\sqrt{x^{2}-1}\,dx=\frac{1}{2}\int_{\alpha}^{\beta}(\cosh 2t-1)\,% dt=\frac{1}{2}\left[\frac{1}{2}\sinh 2t-t\right]_{\alpha}^{\beta}=\frac{1}{2}% \left[\sinh t\cosh t-t\right]_{\alpha}^{\beta}.

We have coshα=a\cosh\alpha=a and sinhα=cosh2α-1=a2-1\sinh\alpha=\sqrt{\cosh^{2}\alpha-1}=\sqrt{a^{2}-1}. Similarly, sinhβ=b2-1\sinh\beta=\sqrt{b^{2}-1}. Therefore abx2-1dx=12(bb2-1-aa2-1-cosh-1b+cosh-1a)\int_{a}^{b}\sqrt{x^{2}-1}\,dx=\frac{1}{2}(b\sqrt{b^{2}-1}-a\sqrt{a^{2}-1}-% \cosh^{-1}b+\cosh^{-1}a). We can further simplify using the formula cosh-1x=log(x+x2-1)\cosh^{-1}x=\log(x+\sqrt{x^{2}-1}) for x1x\geq 1. Therefore

abx2-1dx=12(bb2-1-aa2-1-log(b+b2-1a+a2-1)).\int_{a}^{b}\sqrt{x^{2}-1}\,dx=\frac{1}{2}\left(b\sqrt{b^{2}-1}-a\sqrt{a^{2}-1% }-\log\left(\frac{b+\sqrt{b^{2}-1}}{a+\sqrt{a^{2}-1}}\right)\right).

W1.10. We start with the quadratic

x2-4x+8=(x-2)2+4x^{2}-4x+8=(x-2)^{2}+4

and let x-2=2sinhux-2=2\sinh u so that dxdu=2coshu{{dx}\over{du}}=2\cosh u and

x2-4x+8=4(1+sinh2u)=4cosh2u;x^{2}-4x+8=4(1+\sinh^{2}u)=4\cosh^{2}u;

further, the limits change

x|02u|log(2-1)0,\begin{matrix}x&|&0&2\cr u&|&\log(\sqrt{2}-1)&0,\cr\end{matrix}

since -2=2sinhu-2=2\sinh u implies that -2=eu-e-u-2=e^{u}-e^{-u} or e2u+2eu=1e^{2u}+2e^{u}=1, hence that eu+1=2,e^{u}+1=\sqrt{2}, so u=log(2-1)u=\log(\sqrt{2}-1).

This we substitute into the integral and obtain

02dx(x2-4x+8)1/2=log(2-1)02coshu2coshudu=log(2-1)0du=-log(2-1)=log(1+2){\int_{0}^{2}{{dx}\over{(x^{2}-4x+8)^{1/2}}}=\int_{\log(\sqrt{2}-1)}^{0}{{2% \cosh u}\over{2\cosh u}}du=\int_{\log(\sqrt{2}-1)}^{0}du=-\log(\sqrt{2}-1)=% \log(1+\sqrt{2})}

where the last equality holds because 12-1=2+12-1=2+1\frac{1}{\sqrt{2}-1}=\frac{\sqrt{2}+1}{2-1}=\sqrt{2}+1.