Home page for accesible maths 7 Workshop Exercises

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

7.1 Workshop Exercises 1

For more worked examples, see Gilbert and Jordan Guide to Mathematical Methods, pages 153–164.

True or False?

i) If a real polynomial of degree nn has ss real roots, then (n-s)(n-s) is even.

ii) The degree of a real polynomial is equal to the number of distinct roots.

iii) The quadratic polynomial -2x2+6x-7-2x^{2}+6x-7 is irreducible over the real numbers.

iv) If x=sintx=\sin t and 0tπ0\leq t\leq\pi then 1-x2=cost\sqrt{1-x^{2}}=\cos t.

See also Exercises W5.9-5.14 of MATH101. Try not to spend the whole workshop on partial fractions, for which there are lots of examples in Exercises W1.1-1.6. In particular, you should look at W1.7-1.10 on integration by substitution.

W1.1.

Express the following rational functions as the sum of a polynomial and a term f(x)g(x)\frac{f(x)}{g(x)} where degf<degg\deg f<\deg g:

i)x-2x+4; ii)x2+xx-3; iii)x2-1x2+x+3; iv)x3-2x-1x2+2x+2.\mbox{i)}\;\frac{x-2}{x+4};\;\;\mbox{ii)}\;\frac{x^{2}+x}{x-3};\;\;\mbox{iii)}% \;\frac{x^{2}-1}{x^{2}+x+3};\;\;\mbox{iv)}\;\frac{x^{3}-2x-1}{x^{2}+2x+2}.

W1.2.

Express the following rational functions as partial fractions, plus a polynomial if necessary:

i)5x-3x2-x; ii)6x-9x2-x-2; iii)x2+5x+5x3+4x2+5x+2; iv)2x-20x3-2x2+4x-8; v)x3+3x2-x-14x3+3x2+2x-6.\mbox{i)}\;\frac{5x-3}{x^{2}-x};\;\;\mbox{ii)}\;\frac{6x-9}{x^{2}-x-2};\;\;% \mbox{iii)}\;\frac{x^{2}+5x+5}{x^{3}+4x^{2}+5x+2};\;\;\mbox{iv)}\;\frac{2x-20}% {x^{3}-2x^{2}+4x-8};\;\;\mbox{v)}\;\frac{x^{3}+3x^{2}-x-14}{x^{3}+3x^{2}+2x-6}.

W1.3.

Integrate the following functions:

i)x+3(x-1)2; ii)1x2+9iii)4x+9x2+1; iv)x+2x2+3.\mbox{i)}\;\frac{x+3}{(x-1)^{2}};\;\;\mbox{ii)}\;\frac{1}{x^{2}+9}\;\;\mbox{% iii)}\;\frac{4x+9}{x^{2}+1};\;\;\mbox{iv)}\;\frac{x+2}{x^{2}+3}.

W1.4.

a) Find the indefinite integral of the rational functions in W1.2(i)-(iv).

b) Find the indefinite integral of the rational function in W1.2(v), using the substitution u=x2+4x+6u=x^{2}+4x+6 to integrate the part of the form Ax+Bx2+4x+6\frac{Ax+B}{x^{2}+4x+6}.

W1.5. Using partial fractions, find the following indefinite integrals:

i)2x2+7x3-x2-8x+12dx, ii)x3-2x3-x2+4x-4dx.\mbox{i)}\;\int{{2x^{2}+7}\over{x^{3}-x^{2}-8x+12}}\,dx,\;\;\mbox{ii)}\;\int{{% x^{3}-2}\over{x^{3}-x^{2}+4x-4}}dx.

W1.6. i) Given that 1+3i1+3{\rm i} is a root of the following equation, find all of the roots:

z4-6z3+26z2-56z+80=0,z^{4}-6z^{3}+26z^{2}-56z+80=0,

ii) Factorize f(x)=x4-6x3+26x2-56x+80f(x)=x^{4}-6x^{3}+26x^{2}-56x+80 as a product of irreducible real quadratic polynomials.

iii) Use partial fractions to express 26f(x)\frac{26}{f(x)} as a sum of expressions of the form αx+βQ(x)\frac{\alpha x+\beta}{Q(x)} where Q(x)Q(x) is an irreducible quadratic polynomial.

iv) To integrate a rational function of the form αx+βQ(x)\frac{\alpha x+\beta}{Q(x)} where Q(x)=x2+2bx+cQ(x)=x^{2}+2bx+c is an irreducible quadratic, first substitute s=x+bs=x+b so that Q(x)=s2+(c-b2)Q(x)=s^{2}+(c-b^{2}) where c-b2>0c-b^{2}>0. The resulting rational function in ss can be integrated using the method which is explained in 1.16-17 in the notes. (See also the examples in 1.21-24.)

Using the result from (iii), determine the indefinite integral 26f(x)dx\int\!\frac{26}{f(x)}\,dx.

W1.7. By using the substitution t=tanx2t=\tan\frac{x}{2}, find the definite integral

0π2dx5+4cosx.\int_{0}^{\frac{\pi}{2}}{{dx}\over{5+4\cos x}}.

W1.8. Choose substitutions to determine the following integrals:

i)(2x+3)32dx; ii)dxx2+4; iii)2xdxx2-4.\mbox{i)}\;\int(2x+3)^{\frac{3}{2}}\,dx;\;\;\mbox{ii)}\;\int\frac{dx}{\sqrt{x^% {2}+4}};\;\;\mbox{iii)}\;\int\frac{2x\,dx}{\sqrt{x^{2}-4}}.

W1.9. Use suitable substitutions to find the integrals:

i)03dx1+x2; ii)1/31dx(1+x2)2; iii)13dx(1+x)x1/2; iv)01dx4-x2; v)abx2-1dx\mbox{i)}\;\int_{0}^{\sqrt{3}}{{dx}\over{1+x^{2}}};\;\;\mbox{ii)}\;\int_{{1}/{% \sqrt{3}}}^{1}{{dx}\over{(1+x^{2})^{2}}};\;\;\mbox{iii)}\;\int_{1}^{3}{{dx}% \over{(1+x)x^{1/2}}};\;\;\mbox{iv)}\int_{0}^{1}{{dx}\over{\sqrt{4-x^{2}}}};\;% \;\mbox{v)}\;\int_{a}^{b}\sqrt{x^{2}-1}\,dx

where 1<a<b1<a<b in part (v).

W1.10. Use the substitution x-2=2sinhtx-2=2\sinh t to show that

02dx(x2-4x+8)1/2=log(1+2);\int_{0}^{2}{{dx}\over{(x^{2}-4x+8)^{1/2}}}=\log(1+\sqrt{2});

recall that sinh-1y=log(y+y2+1).\sinh^{-1}y=\log(y+\sqrt{y^{2}+1}).