Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.52 Proof of theorem

To prove the theorem, we observe:

dds(0Re-sxf(x)dx)=0Rs(e-sxf(x))dx.\frac{d}{ds}\left(\int_{0}^{R}e^{-sx}f(x)\,dx\right)=\int_{0}^{R}\frac{% \partial}{\partial s}\left(e^{-sx}f(x)\right)\,dx.

Now

s(e-sxf(x))=-xe-sxf(x).\frac{\partial}{\partial s}\left(e^{-sx}f(x)\right)=-xe^{-sx}f(x).

So the right-hand side converges to -(xf(x))-{\mathcal{L}}(xf(x)) as RR\rightarrow\infty. Since the left-hand side converges to dFds\frac{dF}{ds}, this completes the proof.