Home page for accesible maths 6 Chapter 6 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

6.41 Existence of Laplace transforms

Proposition.

Suppose that f:(0,)f:(0,\infty)\rightarrow{\mathbb{R}} is a continuous function that satisfies

|f(x)|Meax  (x>0)|f(x)|\leq Me^{ax}\qquad(x>0)

for some constants aa and MM. Then the Laplace transform integral converges for all s>as>a and satisfies

|(f)(s)|Ms-a  (s>a).|{\mathcal{L}}(f)(s)|\leq{{M}\over{s-a}}\qquad(s>a).

Proof. By the comparison test, |0f(x)e-sxdx|0Meaxe-sxdx|\int_{0}^{\infty}f(x)e^{-sx}\,dx|\leq\int_{0}^{\infty}Me^{ax}e^{-sx}\,dx. Since this integral converges to Ms-a\frac{M}{s-a} by Example 1.60, the Laplace transform of ff converges too.