Home page for accesible maths 5 Chapter 5 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

5.6 Solution to Example 5.5

In both cases, we have to integrateover the area indicated in the diagram.xxyy\curve(10,70,15,60) \curve(10,70,5,60) \curve(130,10,120,15) \curve(130,10,120,5) 111122

In the first case, the inner integral is

01xy2dy=[xy33]01=x3(13-03)=x3.\int_{0}^{1}xy^{2}\,dy=\,{\left[\frac{xy^{3}}{3}\right]_{0}^{1}=}\,{\frac{x}{3% }\left(1^{3}-0^{3}\right)=}\,{\frac{x}{3}.}

Thus the outer integral is 12x3dx=[x26]12=22-126=12.{\int_{1}^{2}\frac{x}{3}\,dx=}\,{\left[\frac{x^{2}}{6}\right]_{1}^{2}=}\,{% \frac{2^{2}-1^{2}}{6}=}\,{\frac{1}{2}.}

In the second case, the inner integral is

12xy2dx=[x2y22]12=3y22.\int_{1}^{2}xy^{2}\,dx=\,{\left[\frac{x^{2}y^{2}}{2}\right]_{1}^{2}=}\,{\frac{% 3y^{2}}{2}.}

So the outer integral is 013y22dy=[y32]01=12.{\int_{0}^{1}\frac{3y^{2}}{2}\,dy=}\,{\left[\frac{y^{3}}{2}\right]_{0}^{1}=}\,% {\frac{1}{2}.}