Home page for accesible maths 4 Chapter 4 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.18 Solution to geometric example

To find the minimum of S(x,y)S(x,y), first we calculate partial derivatives:

Sx=y-64x2, Sy=x-64y2, Sxx=128x3, Sxy= 1, Syy=128y3.S_{x}=\,{y-\frac{64}{x^{2}},}\;\;S_{y}=\,{x-\frac{64}{y^{2}},}\;\;S_{xx}=\,{% \frac{128}{x^{3}},}\;\;S_{xy}=\,{1,}\;\;S_{yy}=\,{\frac{128}{y^{3}}.}

Therefore the stationary points are given by x=64y2x=\,{\frac{64}{y^{2}}} and y=64x2,y=\,{\frac{64}{x^{2}},} so x= 64x4642=x464.x=\,{64\cdot\frac{x^{4}}{64^{2}}=}\,{\frac{x^{4}}{64}.} It follows that x3=64x^{3}=64, so x=4x=4 and hence y=6442=4y=\frac{64}{4^{2}}=4. Thus there is only one stationary point: P=(4,4)P=(4,4).

Now the second order partial derivatives at PP are: Sxx= 2,S_{xx}=\,{2,} Sxy= 1S_{xy}=\,{1} and Syy= 2.S_{yy}=\,{2.} Then Δ= 3\Delta=\,{3} and so PP is a local minimum.

In fact PP is the overall minimum (for x,y>0x,y>0) and so it gives us the minimum value of SS, which is 4848.