To find the partial derivatives of f(x,y)=x2+xyf(x,y)=x^{2}+xy.
Solution.
Let (x,y)=(a,b)(x,y)=(a,b). To determine ∂f∂x\frac{\partial f}{\partial x} we need to calculate the change that occurs in the value of ff for a small change hh in the value of xx. Thus we consider f(a+h,b)=(a+h)2+(a+h)b=a2+2ah+h2+ab+bh.f(a+h,b)=(a+h)^{2}+(a+h)b=\,{a^{2}+2ah+h^{2}+ab+bh.} Then
Similarly, f(a,b+k)-f(a,b)=a2+a(b+k)-a2-ab=ak.f(a,b+k)-f(a,b)=a^{2}+a(b+k)-a^{2}-ab=\,{ak.} Therefore