Home page for accesible maths 2 Chapter 2 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.13 Examples of repeated partial differentiation

Example.

Find (all of) the partial derivatives of f(x,y)=2x3+3xy2+y4.f(x,y)=2x^{3}+3xy^{2}+y^{4}.

Solution. We have fx= 6x2+3y2f_{x}=\,{6x^{2}+3y^{2}} and fy= 6xy+4y3.f_{y}=\,{6xy+4y^{3}.} Continuing, fxx=(fx)x= 12x,f_{xx}=(f_{x})_{x}=\,{12x,} fxy=(fx)y= 6y,f_{xy}=(f_{x})_{y}=\,{6y,} fyx=(fy)x= 6yf_{yx}=(f_{y})_{x}=\,{6y} and fyy=(fy)y= 6x+12y2.f_{yy}=(f_{y})_{y}=\,{6x+12y^{2}.} The only non-zero third order partial derivatives are:

fxxx=(fxx)x= 12, fxyy=(fxy)y= 6, fyxy=(fyx)y= 6,f_{xxx}=(f_{xx})_{x}=\,{12,}\;\;f_{xyy}=(f_{xy})_{y}=\,{6,}\;\;f_{yxy}=(f_{yx}% )_{y}=\,{6,}
fyyx=(fyy)x= 6, andfyyy=(fyy)y= 24y.f_{yyx}=(f_{yy})_{x}=\,{6,}\;\;\mbox{and}\;f_{yyy}=(f_{yy})_{y}=\,{24y.}

Finally, the only non-zero fourth order derivative is fyyyy=(fyyy)y= 24.f_{yyyy}=(f_{yyy})_{y}=\,{24.}