Home page for accesible maths 2 Chapter 2 contents

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

2.10 Solution

Solution. First of all, divide through by AA and set c=logkAc=\log\frac{k}{A}. Since kk and AA are constants, so is cc. Also,

exp(c)=kA=exp(TS-HRT).\exp(c)=\frac{k}{A}=\exp\left(\frac{TS-H}{RT}\right).

Now take logarithms, to get: c=TS-HRT,c=\,{\frac{TS-H}{RT},} so TS-H=cRTTS-H=cRT, whence H=T(S-cR).H=\,{T(S-cR).}

Since SS, cc and RR are all kept constant, we have:

HT=T(T(S-cR))=S-cR=HT.\frac{\partial H}{\partial T}=\frac{\partial}{\partial T}\left(T(S-cR)\right)% \,{=S-cR}\,{=\frac{H}{T}.}