Home page for accesible maths 12 Numerical answers to tests

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

12.1 Answers to 2015 test

1. i) We make the substitution x=coshtx=\cosh t. The value of the integral is 3-12cosh-12\sqrt{3}-\frac{1}{2}\cosh^{-1}2.

ii) We make the substitution t=tanx/2t=\tan x/2, obtaining the integral 1dt(2t-1)(t+2)\int_{1}^{\infty}\frac{dt}{(2t-1)(t+2)}. For the partial fractions step, we obtain 15(22t-1-1t+2)\frac{1}{5}\left(\frac{2}{2t-1}-\frac{1}{t+2}\right). The value of the integral is: 15log6\frac{1}{5}\log 6.

2. i) At (x(t),y(t))(x(t),y(t)) we have dydx=2tt2-1\frac{dy}{dx}=\frac{2t}{t^{2}-1}. The tangent line at QQ is 3y=4x+2e23y=4x+2e^{2}, or y=43x+23e2y=\frac{4}{3}x+\frac{2}{3}e^{2}. The normal line at QQ is 4y+3x=11e24y+3x=11e^{2}, or y=114e2-34xy=\frac{11}{4}e^{2}-\frac{3}{4}x.

ii) We have (dxdt)2+(dydt)2=(t2+1)2e2t\left(\frac{dx}{dt}\right)^{2}+\left(\frac{dy}{dt}\right)^{2}=(t^{2}+1)^{2}e^{% 2t}. The length along the curve is 3e2-33e^{2}-3.

3. i) True, since the auxiliary equation is s2-3s+2s^{2}-3s+2 which has (distinct) roots 11 and 22.

ii) True, by implicit differentiation.

iii) True, since ut=u\frac{\partial u}{\partial t}=u and 2ux2=-u\frac{\partial^{2}u}{\partial x}^{2}=-u.

iv) False: it gives an estimate of 13(f(0)+4f(1)+f(2))=2\frac{1}{3}(f(0)+4f(1)+f(2))=2.

4. There are two stationary points: (1,1)(1,1) and (-1,-1)(-1,-1), which are both saddle points (since Δ=-8x4-4y2<0\Delta=-8x^{4}-4y^{2}<0).

5. The integrating factor is 1+x2\sqrt{1+x^{2}}, and multiplying through by this factor produces the integrable equation:

ddx(y1+x2)=2x\frac{d}{dx}\left(y\sqrt{1+x^{2}}\right)=2x

which has general solution

y=x2+cx2+1.y=\frac{x^{2}+c}{\sqrt{x^{2}+1}}.

The particular solution with y(0)=1y(0)=1 is y=x2+1y=\sqrt{x^{2}+1}.