MATH101 Calculus Workshop Exercise 5 Solutions

W5.1. (i) The indefinite integral is

(5x4+2x-1/2+4x-6x4)dx=x5+4x1/2+4log|x|+2x-3+C.\int\bigl(5x^{4}+2x^{-1/2}+{{4}\over{x}}-{{6}\over{x^{4}}}\bigr)dx=x^{5}+4x^{1% /2}+4\log|x|+2x^{-3}+C.

(ii) Likewise we integrate each summand and obtain

(e1-3x+5x+7)dx=-13e1-3x+215(5x+7)3/2+C.\int\bigl(e^{1-3x}+\sqrt{5x+7}\bigr)dx={{-1}\over{3}}e^{1-3x}+{{2}\over{15}}(5% x+7)^{3/2}+C.

W5.2. The definite integrals are

(i)01(1-x)5/2dx=[-27(1-x)7/2]01=27;(i)\quad\int_{0}^{1}(1-x)^{5/2}\,dx=\Bigl[-{{2}\over{7}}(1-x)^{7/2}\Bigr]_{0}^% {1}={{2}\over{7}};
(ii)π/4π/3cosec2xdx=[-cotx]π/4π/3=cotπ/4-cotπ/3=1-1/3,\eqalignno{(ii)\quad\int_{\pi/4}^{\pi/3}{\hbox{cosec}}^{2}x\,dx&=\Bigl[-\cot x% \Bigr]_{\pi/4}^{\pi/3}\cr&=\cot\pi/4-\cot\pi/3\cr&=1-1/\sqrt{3},\cr}

where the integral (ii) is similar to example in lectures.


W5.3. (i) We have

ddx(secx+tanx)=ddx(1cosx+sinxcosx)=sinxcos2x+1cos2x=secxtanx+sec2x;\eqalignno{{{d}\over{dx}}\bigl(\sec x+\tan x\bigr)&={{d}\over{dx}}\Bigl({{1}% \over{\cos x}}+{{\sin x}\over{\cos x}}\Bigr)\cr&={{\sin x}\over{\cos^{2}x}}+{{% 1}\over{\cos^{2}x}}\cr&=\sec x\tan x+\sec^{2}x;\cr}

hence we have

ddxlog|secx+tanx|=secxtanx+sec2xsecx+tanx=secx.\eqalignno{{{d}\over{dx}}\log\bigl|\sec x+\tan x\bigr|&={{\sec x\tan x+\sec^{2% }x}\over{\sec x+\tan x}}\cr&=\sec x.\cr}

(ii) By the Fundamental Theorem of Calculus and (i), we have

secxdx=log|secx+tanx|+C.\int\sec x\,dx=\log\bigl|\sec x+\tan x\bigr|+C.

W5.4. (i) We have

0πcos2tdt=120π(1+cos2t)dt=12[t+12sin2t]0π=12[π+12sin2π]-12[0]=π2.\eqalignno{\int_{0}^{\pi}\cos^{2}t\,dt&={{1}\over{2}}\int_{0}^{\pi}(1+\cos 2t)% \,dt\cr&={{1}\over{2}}\bigl[t+{{1}\over{2}}\sin 2t\bigr]_{0}^{\pi}\cr&={{1}% \over{2}}\bigl[\pi+{{1}\over{2}}\sin 2\pi\bigr]-{{1}\over{2}}\bigl[0\bigr]\cr&% ={{\pi}\over{2}}.\cr}

(ii) We use the addition formulæ and obtain

0π/2costcos2tdt=120π/2(cost+cos3t)dt=12[sint+13sin3t]0π/2=12[sinπ2+13sin3π2]-12[0]=12[1-13]=13.\eqalignno{\int_{0}^{\pi/2}\cos t\cos 2t\,dt&={{1}\over{2}}\int_{0}^{\pi/2}(% \cos t+\cos 3t)\,dt\cr&={{1}\over{2}}\bigl[\sin t+{{1}\over{3}}\sin 3t\bigr]_{% 0}^{\pi/2}\cr&={{1}\over{2}}\bigl[\sin{{\pi}\over{2}}+{{1}\over{3}}\sin{{3\pi}% \over{2}}\bigr]-{{1}\over{2}}\bigl[0\bigr]\cr&={{1}\over{2}}\bigl[1-{{1}\over{% 3}}\bigr]\cr&={{1}\over{3}}.\cr}

W5.5 (i) Integrating twice by parts, we have

I=x2sinxdx=-x2cosx+2xcosxdx=-x2cosx+2xsinx-2sinxdx=-x2cosx+2xsinx+2cosx+C.\eqalignno{I&=\int x^{2}\sin x\,dx\cr&=-x^{2}\cos x+\int 2x\cos x\,dx\cr&=-x^{% 2}\cos x+2x\sin x-\int 2\sin x\,dx\cr&=-x^{2}\cos x+2x\sin x+2\cos x+C.\cr}

(ii) Likewise, we have

J=x2logxdx=(1/3)x3logx-(1/3)x3(1/x)dx=(1/3)x3logx-(1/3)x2dx=(1/3)x3logx-(1/9)x3+C.\eqalignno{J&=\int x^{2}\log x\,dx\cr&=(1/3)x^{3}\log x-\int(1/3)x^{3}(1/x)\,% dx\cr&=(1/3)x^{3}\log x-\int(1/3)x^{2}\,dx\cr&=(1/3)x^{3}\log x-(1/9)x^{3}+C.\cr}

W5.6 (i) Integrating twice by parts, we have

I=x2coshxdx=x2sinhx-2xsinhxdx=x2sinhx-2xcoshx+2coshxdx=x2sinhx-2xcoshx+2sinhx+C.\eqalignno{I&=\int x^{2}\cosh x\,dx\cr&=x^{2}\sinh x-\int 2x\sinh x\,dx\cr&=x^% {2}\sinh x-2x\cosh x+\int 2\cosh x\,dx\cr&=x^{2}\sinh x-2x\cosh x+2\sinh x+C.\cr}

(ii) Using a hyperbolic identity, we obtain

cosh2xdx=12(cosh2x+1)dx=14sinh2x+x2+C.\eqalignno{\int\cosh^{2}x\,dx&={{1}\over{2}}\int(\cosh 2x+1)\,dx\cr&={{1}\over% {4}}\sinh 2x+{{x}\over{2}}+C.\cr}

W5.7 Let

In=0π/2sinnxdx.I_{n}=\int_{0}^{\pi/2}\sin^{n}xdx.

(i) In particular we have

I0=0π/2sin0xdx=0π/21dx=π2,I_{0}=\int_{0}^{\pi/2}\sin^{0}x\,dx=\int_{0}^{\pi/2}1dx={{\pi}\over{2}},
I1=0π/2sinxdx=[-cosx]0π/2=cos0-cosπ/2=1.I_{1}=\int_{0}^{\pi/2}\sin x\,dx=\bigl[-\cos x\bigr]_{0}^{\pi/2}=\cos 0-\cos{% \pi/2}=1.

(ii) We integrate by parts to get, for n>1n>1,

In=0π/2sinxsinn-1xdx=[-cosxsinn-1x]0π/2+(n-1)0π/2cos2xsinn-2xdx\eqalign{I_{n}&=\int_{0}^{\pi/2}\sin x\sin^{n-1}x\,dx\cr&=\bigl[-\cos x\sin^{n% -1}x\bigr]_{0}^{\pi/2}+(n-1)\int_{0}^{\pi/2}\cos^{2}x\sin^{n-2}x\,dx\cr}

since ddxsinn-1x=(n-1)sinn-2xcosx.{{d}\over{dx}}\sin^{n-1}x=(n-1)\sin^{n-2}x\cos x. We observe that sinn-10=0\sin^{n-1}0=0 for n>1n>1, and that cos2x=1-sin2x;\cos^{2}x=1-\sin^{2}x; hence

In=(n-1)0π/2sinn-2xdx-(n-1)0π/2sinnxdx=(n-1)In-2-(n-1)In,\eqalign{I_{n}&=(n-1)\int_{0}^{\pi/2}\sin^{n-2}x\,dx-(n-1)\int_{0}^{\pi/2}\sin% ^{n}x\,dx\cr&=(n-1)I_{n-2}-(n-1)I_{n},\cr}

and we rearrange this to obtain the reduction formula

In=n-1nIn.I_{n}={{n-1}\over{n}}I_{n}.

By this reduction formula and the results of (i), we have

I4=34I2=3.14.2I0=3.14.2π2=3π16,I5=45I3=4.25.3I1=815.\eqalign{I_{4}&={{3}\over{4}}I_{2}={{3.1}\over{4.2}}I_{0}={{3.1}\over{4.2}}{{% \pi}\over{2}}={{3\pi}\over{16}},\cr I_{5}&={{4}\over{5}}I_{3}={{4.2}\over{5.3}% }I_{1}={{8}\over{15}}.\cr}

please try to write this nicely


W5.8. (i) Now

ddxsinnx=nsinn-1xcosx,{{d}\over{dx}}\sin^{n}x=n\sin^{n-1}x\cos x,

so

d2dx2sinnx=n(n-1)sinn-2xcos2x-nsinnx=n(n-1)sinn-2x(1-sin2x)-nsinnx=n(n-1)sinn-2x-n2sinnx.\eqalign{{{d^{2}}\over{dx^{2}}}\sin^{n}x&=n(n-1)\sin^{n-2}x\cos^{2}x-n\sin^{n}% x\cr&=n(n-1)\sin^{n-2}x(1-\sin^{2}x)-n\sin^{n}x\cr&=n(n-1)\sin^{n-2}x-n^{2}% \sin^{n}x.\cr}

(ii) We integrate by parts and obtain

In=0πexsinnxdx=[exsinnx]0π-n0πexsinn-1xcosxdx.\eqalign{I_{n}&=\int_{0}^{\pi}e^{x}\sin^{n}x\,dx\cr&=\bigl[e^{x}\sin^{n}x\bigr% ]_{0}^{\pi}-n\int_{0}^{\pi}e^{x}\sin^{n-1}x\cos x\,dx.\cr}

so, when we integrate by parts again, we obtain

In=[exsinnx-nexsinn-1xcosx]0π+n0πex((n-1)sinn-2x-nsinnx)dxIn=n(n-1)In-2-n2In;\eqalign{I_{n}&=\bigl[e^{x}\sin^{n}x-ne^{x}\sin^{n-1}x\cos x\bigr]_{0}^{\pi}+n% \int_{0}^{\pi}e^{x}\bigl((n-1)\sin^{n-2}x-n\sin^{n}x\bigr)dx\cr I_{n}&=n(n-1)I% _{n-2}-n^{2}I_{n};\cr}

hence we have the recurrence relation

In=n(n-1)n2+1In-2  (n>1).I_{n}={{n(n-1)}\over{n^{2}+1}}I_{n-2}\qquad(n>1).

Starting from the result for I1I_{1} in lectures, we deduce

I1=12(eπ+1),I3=3.29+1I1=310(eπ+1),I5=5.425+1I3=313(eπ+1),I7=7.649+1I5=63325(eπ+1).\eqalign{I_{1}&={{1}\over{2}}{(e^{\pi}+1)},\cr I_{3}&={{3.2}\over{9+1}}I_{1}={% {3}\over{10}}({{e^{\pi}+1}}),\cr I_{5}&={{5.4}\over{25+1}}I_{3}={{3}\over{13}}% (e^{\pi}+1),\cr I_{7}&={{7.6}\over{49+1}}I_{5}={{63}\over{325}}(e^{\pi}+1).\cr}

W5.9. (i) Observe that (1+x2)=2x(1+x^{2})^{\prime}=2x, hence

2x1+x2dx=log(1+x2)+C.\int{{2x}\over{1+x^{2}}}dx=\log(1+x^{2})+C.

Alternatively, let u=1+x2u=1+x^{2}, so dudx=2x{{du}\over{dx}}=2x, and substitute to get

2xdx1+x2=duu=log|u|+C=log(1+x2)+C.\eqalign{\int{{2xdx}\over{1+x^{2}}}&=\int{{du}\over{u}}\cr&=\log|u|+C\cr&=\log% (1+x^{2})+C.\cr}

(ii) Observe that ddx(x2+6x+100)=2x+6{{d}\over{dx}}(x^{2}+6x+100)=2x+6, so we let u=x2+6x+100u=x^{2}+6x+100 and then du/dx=2x+6du/dx=2x+6, so

(x+3)dxx2+6x+100=12duu=12log|u|+C=12log(x2+6x+100)+C.\eqalignno{\int{{(x+3)dx}\over{x^{2}+6x+100}}&={{1}\over{2}}\int{{du}\over{u}}% \cr&={{1}\over{2}}\log|u|+C\cr&={{1}\over{2}}\log(x^{2}+6x+100)+C.\cr}

W5.10. (i) By partial fractions, we have

2x+3(x+1)(x+2)dx=(1x+1+1x+2)dx=log|x+1|+log|x+2|+C.\eqalign{\int{{2x+3}\over{(x+1)(x+2)}}dx&=\int\Bigl({{1}\over{x+1}}+{{1}\over{% x+2}}\Bigr)dx\cr&=\log|x+1|+\log|x+2|+C.\cr}

(ii) The partial fractions here give

x(x-1)2=x-1+1(x-1)2dx=dxx-1dx+dx(x-1)2=log|x-1|-1x-1+C.\eqalign{\int{{x}\over{(x-1)^{2}}}&=\int{{x-1+1}\over{(x-1)^{2}}}dx\cr&=\int{{% dx}\over{x-1}}dx+\int{{dx}\over{(x-1)^{2}}}\cr&=\log|x-1|-{{1}\over{x-1}}+C.\cr}

W5.11. Let u=sin2tu=\sin^{2}t so that dudt=2costsint{{du}\over{dt}}=2\cos t\sin t and 1-u=1-sin2t=cos2t.1-u=1-\sin^{2}t=\cos^{2}t. Then

u|01t|0π/2\matrix{u&|&0&1\cr t&|&0&\pi/2\cr}

and so we obtain by substituting

Jk=01(1-u)k/2u-1/2du=20π/2coskt(sint)-1costsintdt=20π/2cosk+1tdt=2Ik+1,\eqalign{J_{k}&=\int_{0}^{1}(1-u)^{k/2}u^{-1/2}\,du\cr&=2\int_{0}^{\pi/2}\cos^% {k}t(\sin t)^{-1}\cos t\sin t\,dt\cr&=2\int_{0}^{\pi/2}\cos^{k+1}t\,dt=2I_{k+1% },\cr}

where we recall the notation of lectures. In particular,

J3=2I4=3π8.J_{3}=2I_{4}={{3\pi}\over{8}}.

W5.12. (i) Let x=3tanux=3\tan u, so that dxdu=3sec2u{{dx}\over{du}}=3\sec^{2}u and 9+x2=9(1+tan2u)=9sec2u9+x^{2}=9(1+\tan^{2}u)=9\sec^{2}u. The limits of integration change as

x|3  u|π/6  (π/2)-,\eqalign{x&|\quad\sqrt{3}\qquad\rightarrow\infty\cr u&|\quad\pi/6\qquad(\pi/2)% -,\cr}

Hence

3dx9+x2=π/6π/2-3sec2u32sec2udu=13π/6π/2-du=π/9.\eqalign{\int_{\sqrt{3}}^{\infty}{{dx}\over{9+x^{2}}}&=\int_{\pi/6}^{\pi/2-}{{% 3\sec^{2}u}\over{3^{2}\sec^{2}u}}du\cr&={{1}\over{3}}\int_{\pi/6}^{\pi/2-}du% \cr&=\pi/9.\cr}

(ii) In this integral we let x=3tanux=3\tan u, so that dxdu=3sec2u{{dx}\over{du}}=3\sec^{2}u and 9+x2=9(1+tan2u)=9sec2u9+x^{2}=9(1+\tan^{2}u)=9\sec^{2}u as before. The limits of integration change as

x|0  u|0  (π/2)-,\eqalign{x&|\quad 0\qquad\rightarrow\infty\cr u&|\quad 0\qquad(\pi/2)-,\cr}

Hence

0dx(9+x2)2=0π/2-3sec2u92sec4udu=1270π/2-cos2udu=12×270π/2-(1+cos2u)du=12×27[u+12sin2u]0π/2-=12×27[π2+12sinπ]-12×27[0]=π108.\eqalign{\int_{0}^{\infty}{{dx}\over{(9+x^{2})^{2}}}&=\int_{0}^{\pi/2-}{{3\sec% ^{2}u}\over{9^{2}\sec^{4}u}}du\cr&={{1}\over{27}}\int_{0}^{\pi/2-}\cos^{2}u\,% du\cr&={{1}\over{2\times 27}}\int_{0}^{\pi/2-}(1+\cos 2u)du\cr&={{1}\over{2% \times 27}}\Bigl[u+{{1}\over{2}}\sin 2u\Bigr]_{0}^{\pi/2-}\cr&={{1}\over{2% \times 27}}\Bigl[{{\pi}\over{2}}+{{1}\over{2}}\sin\pi\Bigr]-{{1}\over{2\times 2% 7}}\Bigl[0\Bigr]\cr&={{\pi}\over{108}}.}

W5.13. (i) We make the substitution u=x2+4x+5u=x^{2}+4x+5, so du/dx=2x+4du/dx=2x+4 and find the integral

J1=2x+4x2+4x+5dx=duu=log|u|+C=log(x2+4x+5)+C.\eqalignno{J_{1}&=\int{{2x+4}\over{x^{2}+4x+5}}dx\cr&=\int{{du}\over{u}}\cr&=% \log|u|+C\cr&=\log(x^{2}+4x+5)+C.\cr}

(ii) In the integral

J2=dx(x+2)2+1J_{2}=\int{{dx}\over{(x+2)^{2}+1}}

we substitute x+2=tantx+2=\tan t, so dx/dt=sec2tdx/dt=\sec^{2}t and (x+2)2+1=tan2t+1=sec2t(x+2)^{2}+1=\tan^{2}t+1=\sec^{2}t; hence

J2=dx(x+2)2+1=sec2tdtsec2t=dt=t+C=tan-1(x+2)+C.\eqalignno{J_{2}&=\int{{dx}\over{(x+2)^{2}+1}}\cr&=\int{{\sec^{2}tdt}\over{% \sec^{2}t}}\cr&=\int dt\cr&=t+C\cr&=\tan^{-1}(x+2)+C.\cr}

(iii) Now we look for constants AA and BB such that

xdxx2+4x+5=A2x+4x2+4x+5+Bdxx2+4x+5\int{{xdx}\over{x^{2}+4x+5}}=A\int{{2x+4}\over{x^{2}+4x+5}}+B\int{{dx}\over{x^% {2}+4x+5}}

and then

x=A(2x+4)+Bx=A(2x+4)+B

so A=1/2A=1/2 and B=-2B=-2; hence

xdxx2+4x+5=12log(x2+4x+5)-2tan-1(x+2)+C.\int{{xdx}\over{x^{2}+4x+5}}={{1}\over{2}}\log(x^{2}+4x+5)-2\tan^{-1}(x+2)+C.

W5.14. The difference of squares identity gives (1-x)(1+x)=1-x2(1-x)(1+x)=1-x^{2}, so

1+x1-xdx=1+x1-x2dx=dx1-x2+xdx1-x2=sin-1x-1-x2+C,\eqalignno{\int{{\sqrt{1+x}}\over{\sqrt{1-x}}}dx&=\int{{1+x}\over{\sqrt{1-x^{2% }}}}dx\cr&=\int{{dx}\over{\sqrt{1-x^{2}}}}+\int{{xdx}\over{\sqrt{1-x^{2}}}}\cr% &=\sin^{-1}x-\sqrt{1-x^{2}}+C,\cr}

where the final integral is given by guesswork or by using the substitution u=1-x2u=1-x^{2}.