MATH101 Calculus Workshop Exercise 4 Solutions

W4.1(i) We complete the square

z2+6z+11=0z^{2}+6z+11=0

so

(z+3)2+2=0(z+3)^{2}+2=0
(z+3)2=-2(z+3)^{2}=-2

hence

z+3=±i2;z+3=\pm i\sqrt{2};

finally

z=-3±i2.z=-3\pm i\sqrt{2}.

(ii) We complete the square

z2+6iz+11=0z^{2}+6iz+11=0

so

(z+3i)2+20=0(z+3i)^{2}+20=0
(z+3i)2=-20(z+3i)^{2}=-20

hence

z+3i=±i20;z+3i=\pm i\sqrt{20};

finally

z=-3i±i25.z=-3i\pm i2\sqrt{5}.

W4.2 For f(x)=exsinxf(x)=e^{x}\sin x, we compute the successive derivatives in parallel columns

f(x)=exsinx,f(0)=0f(x)=exsinx+excosx,f(0)=1f′′(x)=exsinx+excosx+excosx-exsinx=2excosx,f′′(0)=2f′′′(x)=2excosx-2exsinx,f′′′(0)=2;\eqalignno{f(x)=e^{x}\sin x,&\qquad f(0)=0\cr f^{\prime}(x)=e^{x}\sin x+e^{x}% \cos x,&\qquad f^{\prime}(0)=1\cr f^{\prime\prime}(x)=e^{x}\sin x+e^{x}\cos x+% e^{x}\cos x-e^{x}\sin x=2e^{x}\cos x,&\qquad f^{\prime\prime}(0)=2\cr f^{% \prime\prime\prime}(x)=2e^{x}\cos x-2e^{x}\sin x,&\qquad f^{\prime\prime\prime% }(0)=2;\cr}

hence the general formula for the Maclaurin series

f(x)=f(0)+f(0)x+f′′(0)2!x2+f(x)=f(0)+f^{\prime}(0)x+{{f^{\prime\prime}(0)}\over{2!}}x^{2}+\dots

gives

exsinx=0+x+22!x2+23!x3+=x+x2+x33+.\eqalignno{e^{x}\sin x&=0+x+{{2}\over{2!}}x^{2}+{{2}\over{3!}}x^{3}+\dots\cr&=% x+x^{2}+{{x^{3}}\over{3}}+\dots.\cr}

W4.3 With z=1+iz=1+i and w=2-3iw=2-3i we have

zw=5-i; z+w=3-2i, z-w=-1+4i, z¯+w¯=1-i+2+3i=3+2izw=5-i;\quad z+w=3-2i,\quad z-w=-1+4i,\quad\bar{z}+\bar{w}=1-i+2+3i=3+2i
zw=1+i2-3i=1+i2-3i2+3i2+3i=-1+5i13.{{z}\over{w}}={{1+i}\over{2-3i}}={{1+i}\over{2-3i}}{{2+3i}\over{2+3i}}={{-1+5i% }\over{13}}.

W4.4 (i) In this case the sucessive derivatives are

f(x)=sinh2x,f(0)=0;f(x)=2cosh2x,f(0)=2;f′′(x)=4sinh2x,f′′(0)=0;\matrix{f(x)=\sinh 2x,&&f(0)=0;\cr f^{\prime}(x)=2\cosh 2x,&&f^{\prime}(0)=2;% \cr f^{\prime\prime}(x)=4\sinh 2x,&&f^{\prime\prime}(0)=0;\cr}

where the pattern of derivatives repeats, so the Maclaurin series is

sinh2x=2x+23x33!+25x55!+.\sinh 2x=2x+{{2^{3}x^{3}}\over{3!}}+{{2^{5}x^{5}}\over{5!}}+\dots.

(ii) We write

tanh-1(x)=12log1+x1-x=12log(1+x)-12log(1-x)\tanh^{-1}(x)={{1}\over{2}}\log{{1+x}\over{1-x}}={{1}\over{2}}\log(1+x)-{{1}% \over{2}}\log(1-x)

and differentiate to get

ddxtanh-1x=12(1+x)-1+12(1-x)-1.{{d}\over{dx}}\tanh^{-1}x={{1}\over{2}}(1+x)^{-1}+{{1}\over{2}}(1-x)^{-1}.

(iii) The Macalurin coefficients are

f(x)=tanh-1x,f(0)=0;f(x)=2-1(1+x)-1+2-1(1-x)-1,f(0)=1;f′′(x)=-2-1(1+x)-2+2-1(1-x)-2f′′(0)=0;f′′′(x)=(1+x)-3+(1-x)-3f′′′(0)=2;\matrix{f(x)=\tanh^{-1}x,&&f(0)=0;\cr f^{\prime}(x)=2^{-1}(1+x)^{-1}+2^{-1}(1-% x)^{-1},&&f^{\prime}(0)=1;\cr f^{\prime\prime}(x)=-2^{-1}(1+x)^{-2}+2^{-1}(1-x% )^{-2}&&f^{\prime\prime}(0)=0;\cr f^{\prime\prime\prime}(x)=(1+x)^{-3}+(1-x)^{% -3}&&f^{\prime\prime\prime}(0)=2;}

so the Maclaurin series is

tanh-1x=x+2x33!+=x+x33+.\tanh^{-1}x=x+{{2x^{3}}\over{3!}}+\dots=x+{{x^{3}}\over{3}}+\dots.

and generally

tanh-1x=x+x33+x55++x2n+12n+1+.\tanh^{-1}x=x+{{x^{3}}\over{3}}+{{x^{5}}\over{5}}+\dots+{{x^{2n+1}}\over{2n+1}% }+\dots.

W4.6 (i) In this case the sucessive derivatives are

f(x)=tan-1x,f(0)=0;f(x)=(1+x2)-1,f(0)=1;f′′(x)=-2x(1+x2)-2,f′′(0)=0;f′′′(x)=-2(1+x2)-2+8x2(1+x2)-3,f′′′(0)=-2;\matrix{f(x)=\tan^{-1}x,&&f(0)=0;\cr f^{\prime}(x)=(1+x^{2})^{-1},&&f^{\prime}% (0)=1;\cr f^{\prime\prime}(x)=-2x(1+x^{2})^{-2},&&f^{\prime\prime}(0)=0;\cr f^% {\prime\prime\prime}(x)=-2(1+x^{2})^{-2}+8x^{2}(1+x^{2})^{-3},&&f^{\prime% \prime\prime}(0)=-2;\cr}

only odd terms are non-zero in the final column, and again the signs alternate. Hence the Maclaurin series begins

tan-1x=x-2x33!+=x-x33+.\tan^{-1}x=x-{{2x^{3}}\over{3!}}+\dots=x-{{x^{3}}\over{3}}+\dots.

(ii) Let x=1/3x=1/\sqrt{3}. Then

π6=tan-113=13-1333+15323-.{{\pi}\over{6}}=\tan^{-1}{{1}\over{\sqrt{3}}}={{1}\over{\sqrt{3}}}-{{1}\over{3% \cdot 3\sqrt{3}}}+{{1}\over{5\cdot 3^{2}\sqrt{3}}}-\dots.

so

π=23(1-133+1532-1733+).\pi=2\sqrt{3}\Bigl(1-{{1}\over{3\cdot 3}}+{{1}\over{5\cdot 3^{2}}}-{{1}\over{7% \cdot 3^{3}}}+\dots\Bigr).

W4.7 (i) Let PnP_{n} be the statement

1+z++zn-1=1-zn1-z.1+z+\dots+z^{n-1}={{1-z^{n}}\over{1-z}}.

Basis of induction.P1P_{1} asserts that 1=11=1, which holds.

Induction step Suppose that PnP_{n} holds for some nn, and consider Pn+1P_{n+1}; then

(1+z++zn-1)+zn=1-zn1-z+zn=1-zn+zn-zn+11-z=1-zn+11-z;\eqalignno{\bigl(1+z+\dots+z^{n-1}\bigr)+z^{n}&={{1-z^{n}}\over{1-z}}+z^{n}\cr% &={{1-z^{n}+z^{n}-z^{n+1}}\over{1-z}}\cr&={{1-z^{n+1}}\over{1-z}};\cr}

hence Pn+1P_{n+1} holds and hence result by induction.

(ii) The complex conjugate of 1-z=1-reiθ=1-rcosθ-risinθ1-z=1-re^{i\theta}=1-r\cos\theta-ri\sin\theta is 1-rcosθ+irsinθ1-r\cos\theta+ir\sin\theta.

We have

11-reiθ=11-rcosθ-risinθ1-rcosθ+irsinθ1-rcosθ+irsinθ=1-rcosθ+irsinθ(1-rcosθ)2+r2sin2θ=1-rcosθ+irsinθ1-2rcosθ+r2cos2θ+r2sin2θ=1-rcosθ+irsinθ1-2rcosθ+r2.\eqalignno{{{1}\over{1-re^{i\theta}}}&={{1}\over{1-r\cos\theta-ri\sin\theta}}{% {1-r\cos\theta+ir\sin\theta}\over{1-r\cos\theta+ir\sin\theta}}\cr&={{1-r\cos% \theta+ir\sin\theta}\over{(1-r\cos\theta)^{2}+r^{2}\sin^{2}\theta}}\cr&={{1-r% \cos\theta+ir\sin\theta}\over{1-2r\cos\theta+r^{2}\cos^{2}\theta+r^{2}\sin^{2}% \theta}}\cr&={{1-r\cos\theta+ir\sin\theta}\over{1-2r\cos\theta+r^{2}}}.\cr}

W4.8 We have

f(x)=Ax2-Bx  (x>0),f(x)={{A}\over{x^{2}}}-{{B}\over{x}}\qquad(x>0),

so

f(x)=-2Ax3+Bx2  (x>0),f^{\prime}(x)={{-2A}\over{x^{3}}}+{{B}\over{x^{2}}}\qquad(x>0),
f′′(x)=6Ax4-2Bx3  (x>0);f^{\prime\prime}(x)={{6A}\over{x^{4}}}-{{2B}\over{x^{3}}}\qquad(x>0);

so the stationary points have 0=f(x)0=f^{\prime}(x), so

Bx-2A=0;Bx-2A=0;

note that x>0x>0, so x=0x=0 does not give a stationary point. Then x=2A/Bx=2A/B so

f′′(2A/B)=6AB416A4-2B48A3=B48A3>0;f^{\prime\prime}(2A/B)={{6AB^{4}}\over{16A^{4}}}-{{2B^{4}}\over{8A^{3}}}={{B^{% 4}}\over{8A^{3}}}>0;

so ff has a local mimimum at x=2A/Bx=2A/B, where

f(2A/B)=AB24A2-B22A=-B24A;f(2A/B)={{AB^{2}}\over{4A^{2}}}-{{B^{2}}\over{2A}}=-{{B^{2}}\over{4A}};

this is the minimum value of ff since f(x)f(x)\rightarrow\infty as x0+x\rightarrow 0+ and f(x)0f(x)\rightarrow 0 as xx\rightarrow\infty. W4.9. The general binomial theorem asserts that

f(x)=(1+x)α=n=0(αn)xn  (-1<x<1)f(x)=(1+x)^{\alpha}=\sum_{n=0}^{\infty}{{\alpha}\choose{n}}x^{n}\qquad(-1<x<1)

where the binomial coefficients are

(αn)=α(α-1)(α-2)(α-n+1)n!,{{\alpha}\choose{n}}={{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}\over{n!}},

which involves a product of nn terms on the numerator.

With α=-12\alpha=-{{1}\over{2}} we have

(-12n)=(-12)(-32)(-52)(-12-n+1)n!=(-1)n1.3.5.(2n-1)2nn!,\eqalign{{{-{{1}\over{2}}}\choose{n}}&={{(-{{1}\over{2}})(-{{3}\over{2}})(-{{5% }\over{2}})\dots(-{{1}\over{2}}-n+1)}\over{n!}}\cr&=(-1)^{n}{{1.3.5.\dots(2n-1% )}\over{2^{n}n!}},\cr}

so the coefficients in the binomial series are all positive, and

(1-x)-1/2=1+x2+3x222.2!+3.5x3233!+=1+x2+3x28+5x316+.(1-x)^{-1/2}=1+{{x}\over{2}}+{{3x^{2}}\over{2^{2}.2!}}+{{3.5x^{3}}\over{2^{3}3% !}}+\dots=1+{{x}\over{2}}+{{3x^{2}}\over{8}}+{{5x^{3}}\over{16}}+\dots.

Remark. The product of the first nn odd integers divided by the product of the first nn even integers equals

1.3.5.(2n-1)2nn!=1.3.5.(2n-1)2.4.6.(2n).{{1.3.5.\dots(2n-1)}\over{2^{n}n!}}={{1.3.5.\dots(2n-1)}\over{2.4.6.\dots(2n)}}.

W4.10 (i) With w=u+ivw=u+iv and z=x+iyz=x+iy, we have w+z=(u+x)+i(v+y)w+z=(u+x)+i(v+y), so

w+z¯=(u+x)-i(v+y)=w¯+z¯;\overline{w+z}=(u+x)-i(v+y)=\overline{w}+\overline{z};

also wz=(ux-vy)+i(uy+vx),wz=(ux-vy)+i(uy+vx), so

wz¯=(ux-vy)-i(uy+vx)=(u-iv)(x-iy)=w¯z¯;\overline{wz}=(ux-vy)-i(uy+vx)=(u-iv)(x-iy)=\overline{w}\overline{z};

further, z/w=zw¯/ww¯z/w=z\overline{w}/w\overline{w}, where ww¯w\overline{w} is real, so

(z/w)¯=z¯w/ww¯=z¯/w¯.\overline{(z/w)}=\overline{z}w/w\overline{w}=\overline{z}/\overline{w}.

(ii) We expand

|wz|2=|(ux-vy)+i(uy+vx)|2=(ux-vy)2+(uy+vx)2=u2x2-2uxvy+v2y2+u2y2+2uyvx+v2x2=u2x2+v2y2+u2y2+v2x2=(u2+v2)(x2+y2)=|w|2|z|2;\eqalign{|wz|^{2}&=|(ux-vy)+i(uy+vx)|^{2}\cr&=(ux-vy)^{2}+(uy+vx)^{2}\cr&=u^{2% }x^{2}-2uxvy+v^{2}y^{2}+u^{2}y^{2}+2uyvx+v^{2}x^{2}\cr&=u^{2}x^{2}+v^{2}y^{2}+% u^{2}y^{2}+v^{2}x^{2}\cr&=(u^{2}+v^{2})(x^{2}+y^{2})\cr&=|w|^{2}|z|^{2};\cr}

so when we take square roots we obtain the nonnegative terms |wz|=|w||z|.|wz|=|w||z|.


W4.11 (i) The differential equation

d2ydx2+4dydx+3y=0{{d^{2}y}\over{dx^{2}}}+4{{dy}\over{dx}}+3y=0

has auxiliary equation

s2+4s+3=0s^{2}+4s+3=0

with roots s=-3,-1s=-3,-1; so the general solution is

a=Ae-3x+Be-xa=Ae^{-3x}+Be^{-x}

where A,BA,B are arbitrary constants.

(ii) The differential equation

d2ydx2+4dydx+4y=0{{d^{2}y}\over{dx^{2}}}+4{{dy}\over{dx}}+4y=0

has auxiliary equation

s2+4s+4=0s^{2}+4s+4=0

with roots s=-2,-2s=-2,-2; so the general solution is

a=Ae-2x+Bxe-2xa=Ae^{-2x}+Bxe^{-2x}

where A,BA,B are arbitrary constants.

(iii) The differential equation

d2ydx2+4dydx+5y=0{{d^{2}y}\over{dx^{2}}}+4{{dy}\over{dx}}+5y=0

has auxiliary equation

s2+4s+5=0s^{2}+4s+5=0

with roots s=-2+i,-2-is=-2+i,-2-i; so the general solution is

a=Ae-2xcosx+Be-2xsinxa=Ae^{-2x}\cos x+Be^{-2x}\sin x

where A,BA,B are arbitrary constants.

W4.12 We have

|z-w|2=(z-w)(z¯-w¯)=(reiθ-seiϕ)(re-iθ-se-iϕ)=r2+s2-rsei(θ-ϕ)-rse-i(θ-ϕ)=r2+s2-2rscos(θ-ϕ);\eqalignno{|z-w|^{2}&=(z-w)(\bar{z}-\bar{w})\cr&=(re^{i\theta}-se^{i\phi})(re^% {-i\theta}-se^{-i\phi})\cr&=r^{2}+s^{2}-rse^{i(\theta-\phi)}-rse^{-i(\theta-% \phi)}\cr&=r^{2}+s^{2}-2rs\cos(\theta-\phi);\cr}

which gives the cosine rule of planar trigonometry for the points 0,z,w0,z,w.

W4.13. (i) We simplify the fractions

w=1+izz+iw={{1+iz}\over{z+i}}

and get

u+iv=1+ix-yx+iy+i=(1+ix-y)(x+iy+i)(x-i-iy)(x-i-iy)=(1-y)x+x(y+1)+ix2-i(1-y2)x2+(y+1)2=2x+i(x2+y2-1)x2+(y+1)2\eqalign{u+iv&={{1+ix-y}\over{x+iy+i}}\cr&={{(1+ix-y)}\over{(x+iy+i)}}{{(x-i-% iy)}\over{(x-i-iy)}}\cr&={{(1-y)x+x(y+1)+ix^{2}-i(1-y^{2})}\over{x^{2}+(y+1)^{% 2}}}\cr&={{2x+i(x^{2}+y^{2}-1)}\over{x^{2}+(y+1)^{2}}}\cr}

and this is real if and only if v=0v=0, or equivalently x2+y2-1=0x^{2}+y^{2}-1=0.

(ii) The real values of ww give the real axis in the complex plane. The values zz such that x2+y2=1x^{2}+y^{2}=1 lie on the unit circle with centre the origin.

(iii) The unit circle x2+y2=1x^{2}+y^{2}=1 is mapped to the horizontal line v=0v=0.

W4.14 We have eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta and eiθ=cos3θ+isin3θ,e^{i\theta}=\cos 3\theta+i\sin 3\theta, so by De Moivre’s Theorem

cos3θ+isin3θ=(cosθ+isinθ)3=cos3θ+3icos2θsinθ-3cosθsin2θ-isin3θ\eqalignno{\cos 3\theta+i\sin 3\theta&=(\cos\theta+i\sin\theta)^{3}\cr&=\cos^{% 3}\theta+3i\cos^{2}\theta\sin\theta-3\cos\theta\sin^{2}\theta-i\sin^{3}\theta\cr}

so equating real and imaginary parts, we have real part

cos3θ=cos3θ-3cosθsin2θ=cos3θ-3cosθ(1-cos2θ)=4cos3θ-3cosθ;\eqalignno{\cos 3\theta&=\cos^{3}\theta-3\cos\theta\sin^{2}\theta\cr&=\cos^{3}% \theta-3\cos\theta(1-\cos^{2}\theta)\cr&=4\cos^{3}\theta-3\cos\theta;\cr}

and imaginary part

sin3θ=3cos2θsinθ-sin3θ=3(1-sin2θ)sinθ-sin3θ=3sinθ-4sin3θ.\eqalignno{\sin 3\theta&=3\cos^{2}\theta\sin\theta-\sin^{3}\theta\cr&=3(1-\sin% ^{2}\theta)\sin\theta-\sin^{3}\theta\cr&=3\sin\theta-4\sin^{3}\theta.\cr}

W4.15. We have 2isinθ=eiθ-e-iθ2i\sin\theta=e^{i\theta}-e^{-i\theta}, so from the binomial expansion, we deduce

25isin5θ=(eiθ-e-iθ)5=e5iθ-5e3iθ+10eiθ-10e-iθ+5e-3iθ-e-5iθ=(e5iθ-e-5iθ)-5(e3iθ-e-3iθ)+10(eiθ-e-iθ)=2isin5θ-10isin3θ+20isinθ\eqalignno{2^{5}i\sin^{5}\theta&=(e^{i\theta}-e^{-i\theta})^{5}\cr&=e^{5i% \theta}-5e^{3i\theta}+10e^{i\theta}-10e^{-i\theta}+5e^{-3i\theta}-e^{-5i\theta% }\cr&=(e^{5i\theta}-e^{-5i\theta})-5(e^{3i\theta}-e^{-3i\theta})+10(e^{i\theta% }-e^{-i\theta})\cr&=2i\sin 5\theta-10i\sin 3\theta+20i\sin\theta\cr}

and hence

sin5θ=116(sin5θ-5sin3θ+10sinθ);\sin^{5}\theta={{1}\over{16}}\bigl(\sin 5\theta-5\sin 3\theta+10\sin\theta% \Bigr);

on integrating, we deduce that

sin5θdθ=-180cos5θ+548cos3θ-58cosθ+C.\int\sin^{5}\theta\,d\theta=-{{1}\over{80}}\cos 5\theta+{{5}\over{48}}\cos 3% \theta-{{5}\over{8}}\cos\theta+C.

W4.16 (i) With

y=x2+4x-6x+3  (x-3),y={{x^{2}+4x-6}\over{x+3}}\qquad(x\neq-3),

the intercepts are at x=0,y=-2x=0,y=-2; and y=0y=0 at x2+4x-6=0x^{2}+4x-6=0, so x=-2±10x=-2\pm\sqrt{10}.

By long division we obtain

y=x+1-9x+3,y=x+1-{{9}\over{x+3}},

so y=x+1y=x+1 is an asymptote as x±x\rightarrow\pm\infty. Also, yy\rightarrow\infty as x(-3)-x\rightarrow(-3)-, while y-y\rightarrow-\infty as x(-3)+x\rightarrow(-3)+; so x=-3x=-3 is a vertical asymptote.

(ii) We have

dydx=1+9(x+3)2>0{{dy}\over{dx}}=1+{{9}\over{(x+3)^{2}}}>0

so there are no stationary points.

W4.17. We have polar forms

z=1+i3=2eiπ/3,  w=1+i=2eiπ/4;z=1+i\sqrt{3}=2e^{i\pi/3},\qquad w=1+i=\sqrt{2}e^{i\pi/4};

hence we have

zw=(1+i3)(1+i)=(1+i3)(1+i)(1-i)(1-i)=1+3+i(3-1)2,{{z}\over{w}}={{(1+i\sqrt{3})}\over{(1+i)}}={{(1+i\sqrt{3})}\over{(1+i)}}{{(1-% i)}\over{(1-i)}}={{1+\sqrt{3}+i(\sqrt{3}-1)}\over{2}},

while the polar form is

zw=2eiπ/32eiπ/4=2eiπ/12;{{z}\over{w}}={{2e^{i\pi/3}}\over{\sqrt{2}e^{i\pi/4}}}=\sqrt{2}e^{i\pi/12};

hence by equating real parts we obtain

2cosπ12=1+32;\sqrt{2}\cos{{\pi}\over{12}}={{1+\sqrt{3}}\over{2}};

so

cosπ12=1+322.\cos{{\pi}\over{12}}={{1+\sqrt{3}}\over{2\sqrt{2}}}.

W4.18. The point -1+i-1+i lies in the second quadrant, hence has polar form -1+i=2ei3π/4.-1+i=\sqrt{2}e^{i3\pi/4}. Hence by de Moivre’s theorem

(-1+i)5=25/2ei15π/4=25/2ei7π/4=421-i2=4(1-i).(-1+i)^{5}=2^{5/2}e^{i15\pi/4}=2^{5/2}e^{i7\pi/4}=4\sqrt{2}{{1-i}\over{\sqrt{2% }}}=4(1-i).

W4.19 One can do this by multiplying out, but it is better to use the polar form. We have (-3+i)(-3-i)=4(-\sqrt{3}+i)(-\sqrt{3}-i)=4, and -3+i-\sqrt{3}+i lies in the second quadrant, so -3+i=2ei5π/6-\sqrt{3}+i=2e^{i5\pi/6}, hence

(-3+i)5=25ei25π/6=32eiπ/6=32(3/2+i/2)=163+i16.\eqalignno{(-\sqrt{3}+i)^{5}&=2^{5}e^{i25\pi/6}\cr&=32e^{i\pi/6}\cr&=32(\sqrt{% 3}/2+i/2)\cr&=16\sqrt{3}+i16.\cr}

so the real part is 16316\sqrt{3} and the imaginary part is 1616.

W4.20 The auxiliary equation is

as2+bs+c=0,as^{2}+bs+c=0,

where b2-4ac>b2b^{2}-4ac>b^{2} since ac<0ac<0, so the roots are real with

α=-b-b2-4ac2a<0\alpha={{-b-\sqrt{b^{2}-4ac}}\over{2a}}<0

and

β=-b+b2-4ac2a>0.\beta={{-b+\sqrt{b^{2}-4ac}}\over{2a}}>0.

Let y1(x)=eαxy_{1}(x)=e^{\alpha x}, which is a solution with y1(x)>0y_{1}(x)>0 and y1(x)0y_{1}(x)\rightarrow 0 as xx\rightarrow\infty, and y2(x)=eβxy_{2}(x)=e^{\beta x}, which is a solution with y2(x)>0y_{2}(x)>0 and y2(x)y_{2}(x)\rightarrow\infty as xx\rightarrow\infty.

W4.21 The sixth complex roots of unity are

z=1, e2πi/6, e4πi/6, e6πi/6, e8πi/6, e10πi/6;z=1,\quad e^{2\pi i/6},\quad e^{4\pi i/6},\quad e^{6\pi i/6},\quad e^{8\pi i/6% },\quad e^{10\pi i/6};

so

z=1, cos(π/3)+isin(π/3), cos(2π/3)+isin(2π/3),z=1,\quad\cos(\pi/3)+i\sin(\pi/3),\quad\cos(2\pi/3)+i\sin(2\pi/3),
cosπ+isinπ, cos(4π/3)+isin(4π/3), cos(5π/3)+isin(5π/3);\cos\pi+i\sin\pi,\quad\cos(4\pi/3)+i\sin(4\pi/3),\quad\cos(5\pi/3)+i\sin(5\pi/% 3);

so

z=1, 1+i32, -1+i32, -1, -1-i32, 1-i32.z=1,\quad{{1+i\sqrt{3}}\over{2}},\quad{{-1+i\sqrt{3}}\over{2}},\quad-1,\quad{{% -1-i\sqrt{3}}\over{2}},\quad{{1-i\sqrt{3}}\over{2}}.

The sixth roots of unity form the vertices of a regular hexagon on the circle with centre 00 and radius 11.