MATH101 Calculus Workshop Exercise 3 Solutions


W3.1. By the quotient rule, we can differentiate cotx\cot x whenever sinx0\sin x\neq 0 and obtain

ddxcotx=ddxcosxsinx=(ddxcosx)sinx-cosx(ddxsinx)sin2x=-sin2x-cos2xsin2x=-1sin2x=-cosec2x  (xnπ)\eqalign{{{d}\over{dx}}\cot x&={{d}\over{dx}}{{\cos x}\over{\sin x}}\cr&={{({{% d}\over{dx}}\cos x)\sin x-\cos x({{d}\over{dx}}\sin x)}\over{\sin^{2}x}}\cr&={% {-\sin^{2}x-\cos^{2}x}\over{\sin^{2}x}}\cr&={{-1}\over{\sin^{2}x}}=-{\hbox{% cosec}}^{2}x\qquad(x\neq n\pi)\cr}

W3.2 (i) f(x)=x1/2-6x-3+logx+log2f(x)=x^{1/2}-6x^{-3}+\log x+\log 2, so f(x)=2-1x-1/2+18x-4+x-1.f^{\prime}(x)=2^{-1}x^{-1/2}+18x^{-4}+x^{-1}.

(ii) We have ddueu=eu{{d}\over{du}}e^{u}=e^{u} and ddx3x5=15x4{{d}\over{dx}}3x^{5}=15x^{4}, so by the chain rule

ddxe3x5=15x4e3x5.{{d}\over{dx}}e^{3x^{5}}=15x^{4}e^{3x^{5}}.

(iii) By the product rule, and then the chain rule, we have

ddx(ex2sinx)=(ddxex2)sinx+ex2ddxsinx=ex2(2xsinx+cosx).\eqalign{{{d}\over{dx}}\Bigl(e^{x^{2}}\sin x\Bigr)&=\Bigl({{d}\over{dx}}e^{x^{% 2}}\Bigr)\sin x+e^{x^{2}}{{d}\over{dx}}\sin x\cr&=e^{x^{2}}\bigl(2x\sin x+\cos x% \bigr).\cr}

(iv) By the chain rule

ddx(cos3x)5=15cos43x(-sin3x)=-15sin3xcos43x.{{d}\over{dx}}\bigl(\cos 3x\bigr)^{5}=15\cos^{4}3x(-\sin 3x)=-15\sin 3x\cos^{4% }3x.

(v) By the quotient rule,

ddxcosx45x=(ddxcosx4)x-cosx4dxdx5x2=-4x4sinx4-cosx45x2.\eqalign{{{d}\over{dx}}{{\cos x^{4}}\over{5x}}&={{({{d}\over{dx}}\cos x^{4})x-% \cos x^{4}{{dx}\over{dx}}}\over{5x^{2}}}\cr&={{-4x^{4}\sin x^{4}-\cos x^{4}}% \over{5x^{2}}}.\cr}

W3.3 Let NN be the number of bacteria, and regard NN as a continuous variable depending upon time xx. The differential equation is

dNdx=kN{{dN}\over{dx}}=kN

with initial condition N(0)=AN(0)=A, where kk and AA are constants to be determined. The solution is N(x)=AekxN(x)=Ae^{kx}. Now N(0)=A=106N(0)=A=10^{6}, and N(100)=2×106N(100)=2\times 10^{6}, so 2=e100k2=e^{100k} and k=(log2)/100.k=(\log 2)/100. Now we look for xx such that N(x)=107N(x)=10^{7}, so ekx=10e^{kx}=10; so

x=(log10)/k=100(log10)/(log2)=332s.x=(\log 10)/k=100(\log 10)/(\log 2)=332s.

W3.4 The inverse function rule asserts that dydx=1/dxdy.{{dy}\over{dx}}=1\big/{{dx}\over{dy}}.

(i) When y=sin-1xy=\sin^{-1}x we have x=sinyx=\sin y, so dxdy=cosy{{dx}\over{dy}}=\cos y and cos2y+sin2y=1\cos^{2}y+\sin^{2}y=1. Hence, for -1<x<1-1<x<1 we have

dydx=1/dxdy=1cosy=11-sin2y=11-x2.{{dy}\over{dx}}=1\big/\,\,{{dx}\over{dy}}={{1}\over{\cos y}}={{1}\over{\sqrt{1% -\sin^{2}y}}}={{1}\over{\sqrt{1-x^{2}}}}.

(ii) When y=cosh-1xy=\cosh^{-1}x we have x=coshyx=\cosh y, so dxdy=sinhy,{{dx}\over{dy}}=\sinh y, where cosh2y-sinh2y=1\cosh^{2}y-\sinh^{2}y=1. Hence for x>1x>1 we have

dydx=1/dxdy=1sinhy=1cosh2y-1=1x2-1.{{dy}\over{dx}}=1\big/\,\,{{dx}\over{dy}}={{1}\over{\sinh y}}={{1}\over{\sqrt{% \cosh^{2}y-1}}}={{1}\over{\sqrt{x^{2}-1}}}.

(iii) We take the positive square root in (i) and (ii) since sin-1\sin^{-1} and cosh-1\cosh^{-1} are increasing functions.

consider this point in detail with reference to the graphs


W3.5. The derivative of tanhy\tanh y is sech2y{\hbox{sech}}^{2}y since by the quotient rule

ddytanhy=ddysinhycoshy=(ddysinhy)coshy-sinhy(ddycoshy)cosh2y=cosh2y-sinh2ycosh2=1cosh2y.\eqalign{{{d}\over{dy}}\tanh y&={{d}\over{dy}}{{\sinh y}\over{\cosh y}}\cr&={{% ({{d}\over{dy}}\sinh y)\cosh y-\sinh y({{d}\over{dy}}\cosh y)}\over{\cosh^{2}y% }}\cr&={{\cosh^{2}y-\sinh^{2}y}\over{\cosh^{2}}}\cr&={{1}\over{\cosh^{2}y}}.\cr}

[1] mark

Let y=tanh-1xy=\tanh^{-1}x so that x=tanhyx=\tanh y and then by the inverse function rule

dydx=1/dxdy=1/sech2y.{{dy}\over{dx}}=1\big/\,\,{{dx}\over{dy}}=1\big/\,{\hbox{sech}}^{2}y.

Dividing the relation cosh2y-sinh2y=1\cosh^{2}y-\sinh^{2}y=1 through by cosh2y\cosh^{2}y, we deduce that 1-tanh2y=sech2y1-\tanh^{2}y={\hbox{sech}}^{2}y, whence

dydx=11-tanh2y=11-x2  (-1<x<1).{{dy}\over{dx}}={{1}\over{1-\tanh^{2}y}}={{1}\over{1-x^{2}}}\qquad(-1<x<1).

W3.6. The volume of the cube is V=x3V=x^{3}, so by the chain rule

k=dVdt=dVdxdxdt=3x2dxdt.k={{dV}\over{dt}}={{dV}\over{dx}}{{dx}\over{dt}}=3x^{2}{{dx}\over{dt}}.

The surface area is A=6x2A=6x^{2}, so we rearrange this to

dxdt=k3x2=2kA.{{dx}\over{dt}}={{k}\over{3x^{2}}}={{2k}\over{A}}.

Remark. We expect AA to be on the denominator, and kk on the numerator; whereas the factor 22 is a special feature of the cube.


W3.7 (i) Now f(x)=exf(x)=e^{x} has f(x)=exf^{\prime}(x)=e^{x} and f′′(x)=ex>0f^{\prime\prime}(x)=e^{x}>0, so ff is convex.

(ii) Also g(x)=xkg(x)=x^{k} has g(x)=kxk-1g^{\prime}(x)=kx^{k-1} and g′′(x)=k(k-1)xk-2>0g^{\prime\prime}(x)=k(k-1)x^{k-2}>0, so gg is convex for x>0x>0.

(iii) Finally, h(x)=xlogxh(x)=x\log x has h(x)=logx+1h^{\prime}(x)=\log x+1 and h′′(x)=1/x>0h^{\prime\prime}(x)=1/x>0 for x>0x>0, so hh is convex.

W3.8 Let PnP_{n} be the statement

Pn:dndxn(1-x)-1=n!(1-x)n+1  (-1<x<1).P_{n}:{{d^{n}}\over{dx^{n}}}(1-x)^{-1}={{n!}\over{(1-x)^{n+1}}}\qquad(-1<x<1).

Basis of induction:P1P_{1} asserts that

ddx(1-x)-1=1!(1-x)2  (-1<x<1),{{d}\over{dx}}(1-x)^{-1}={{1!}\over{(1-x)^{2}}}\qquad(-1<x<1),

which is true.

Induction step: Assume PnP_{n} so that

dndxn(1-x)-1=n!(1-x)n+1  (-1<x<1),{{d^{n}}\over{dx^{n}}}(1-x)^{-1}={{n!}\over{(1-x)^{n+1}}}\qquad(-1<x<1),

then differentiate both sides with respect to xx

ddxdndxn(1-x)-1=(n+1)n!(1-x)n+2  (-1<x<1),{{d}\over{dx}}{{d^{n}}\over{dx^{n}}}(1-x)^{-1}={{(n+1)n!}\over{(1-x)^{n+2}}}% \qquad(-1<x<1),

so

dn+1dxn+1(1-x)-1=(n+1)!(1-x)n+2  (-1<x<1),{{d^{n+1}}\over{dx^{n+1}}}(1-x)^{-1}={{(n+1)!}\over{(1-x)^{n+2}}}\qquad(-1<x<1),

hence Pn+1P_{n+1} holds; hence result by induction.

W3.9 (i) The function coshx\cosh x is strictly increasing on (0,)(0,\infty), so so sechx=1/coshx{\hbox{sech}}x=1/\cosh x is strictly decreasing. Alternatively, we note that

ddxsechx=ddx1coshx=-sinhxcosh2x<0{{d}\over{dx}}{\hbox{sech}}x={{d}\over{dx}}{{1}\over{\cosh x}}=-{{\sinh x}% \over{\cosh^{2}x}}<0

for all x>0x>0.

(ii) Dividing the identity cosh2y-sinh2y=1\cosh^{2}y-\sinh^{2}y=1 by cosh2y\cosh^{2}y, we obtain 1-tanh2y=sech2y1-\tanh^{2}y={\hbox{sech}}^{2}y. Write y=sech-1xy={\hbox{sech}}^{-1}x, so x=sechyx={\hbox{sech}}y. Then

dxdy=-tanhysechy=-x1-x2,{{dx}\over{dy}}=-\tanh y\,{\hbox{sech}}y=-x\sqrt{1-x^{2}},

so by the inverse function rule

dydx=1/dxdy=-1x1-x2.{{dy}\over{dx}}=1/{{dx}\over{dy}}={{-1}\over{x\sqrt{1-x^{2}}}}.

W3.10 With

y(x)=1acoshaxy(x)={{1}\over{a}}\cosh ax

we have

dydx=sinhax{{dy}\over{dx}}=\sinh ax

and

d2ydx2=acoshax{{d^{2}y}\over{dx^{2}}}=a\cosh ax

so

d2ydx2=a1+sinh2ax{{d^{2}y}\over{dx^{2}}}=a\sqrt{1+\sinh^{2}ax}

which gives the required result

d2ydx2=a1+(dydx)2.{{d^{2}y}\over{dx^{2}}}=a\sqrt{1+\Bigl({{dy}\over{dx}}\Bigr)^{2}}.

W3.11 With g(x)=kx+1+x-exg(x)=kx+1+x-e^{x} we have g(x)-g(x)\rightarrow-\infty as xx\rightarrow\infty and g(x)-g(x)\rightarrow-\infty as x-x\rightarrow-\infty. So the maximum value of gg occurs at a stationary point. We have

g(x)=k+1-ex,g^{\prime}(x)=k+1-e^{x},

and

g′′(x)=-ex;g^{\prime\prime}(x)=-e^{x};

so there is a stationary point where g(a)=0g^{\prime}(a)=0, so ea=k+1e^{a}=k+1 and a=log(1+k);a=\log(1+k); this is a local maximum since g′′(a)<0g^{\prime\prime}(a)<0. Now the maximum value of gg is

g(a)=ka+1+a-ea=ka+1+a-(k+1)=(k+1)(a-1)+1=(k+1)(log(1+k)-1)+1.\eqalignno{g(a)&=ka+1+a-e^{a}\cr&=ka+1+a-(k+1)\cr&=(k+1)(a-1)+1\cr&=(k+1)(\log% (1+k)-1)+1.\cr}

W3.12. (i) The difference quotient is

f(a+h)-f(a)h=2(a+h)2+5(a+h)-2a2-5ah=2a2+4ah+2h2+5a+5h-2a2-5ah=4ah+2h2+5hh=4a+2h+54a+5  (h0)\eqalignno{{{f(a+h)-f(a)}\over{h}}&={{2(a+h)^{2}+5(a+h)-2a^{2}-5a}\over{h}}\cr% &={{2a^{2}+4ah+2h^{2}+5a+5h-2a^{2}-5a}\over{h}}\cr&={{4ah+2h^{2}+5h}\over{h}}% \cr&=4a+2h+5\cr&\rightarrow 4a+5\qquad(h\rightarrow 0)\cr}

so ff is differentiable and f(a)=4a+5.f^{\prime}(a)=4a+5.

(ii) Here the difference quotient is only defined when a-2a\neq-2, and for a-2a\neq-2 we can choose a+h-2a+h\neq-2 also. Hence taking terms over a common denominator, we have

g(a+h)-g(a)h=12+a+h-12+ah=2+a-(2+a+h)h(2+a)(2+a+h)=-1(2+a)(2+a+h)-1(2+a)2  (h0)\eqalignno{{{g(a+h)-g(a)}\over{h}}&={{{{1}\over{2+a+h}}-{{1}\over{2+a}}}\over{% h}}\cr&={{2+a-(2+a+h)}\over{h(2+a)(2+a+h)}}\cr&=-{{1}\over{(2+a)(2+a+h)}}\cr&% \rightarrow{{-1}\over{(2+a)^{2}}}\qquad(h\rightarrow 0)\cr}

hence gg is differentiable, and g(a)=-1/(2+a)2.g^{\prime}(a)=-1/(2+a)^{2}.

W3.13 To find the equation of the tangent to the curve y=sinx+cosx+1y=\sin x+\cos x+1 at x=3π/4x=3\pi/4, we note that y(3π/4)=1y(3\pi/4)=1 and

y=cosx-sinxy^{\prime}=\cos x-\sin x

so y(3π/4)=-2y^{\prime}(3\pi/4)=-\sqrt{2}; hence the tangent is

y-1=-2(x-3π/4).y-1=-\sqrt{2}(x-3\pi/4).

W3.14 (i) The function sinhx\sinh x is strictly increasing on (0,)(0,\infty), so so cosechx=1/sinhx{\hbox{cosech}}x=1/\sinh x is strictly decreasing. Alternatively, we note that

ddxcosechx=ddx1sinhx=-coshxsinh2x<0{{d}\over{dx}}{\hbox{cosech}}x={{d}\over{dx}}{{1}\over{\sinh x}}=-{{\cosh x}% \over{\sinh^{2}x}}<0

for all x>0x>0.

(ii) From the identity cosh2y-sinh2y=1\cosh^{2}y-\sinh^{2}y=1, we obtain coth2y-1=cosech2y\coth^{2}y-1={\hbox{cosech}}^{2}y. Write y=cosech-1xy={\hbox{cosech}}^{-1}x, so x=cosechyx={\hbox{cosech}}y. Then

dxdy=-cothycosechy=-xx2-1,{{dx}\over{dy}}=-\coth y\,{\hbox{cosech}}y=-x\sqrt{x^{2}-1},

so by the inverse function rule

dydx=1/dxdy=-1xx2-1.{{dy}\over{dx}}=1/{{dx}\over{dy}}={{-1}\over{x\sqrt{x^{2}-1}}}.