MATH101 Calculus Workshop Exercise 2 Solutions


W2.1. (i) We have

RHS=2coshxsinhx=212(ex+e-x)12(ex-e-x)=12(e2x-e-2x)=sinh2x=LHS.\eqalignno{RHS&=2\cosh x\sinh x\cr&=2{{1}\over{2}}(e^{x}+e^{-x}){{1}\over{2}}(% e^{x}-e^{-x})\cr&={{1}\over{2}}(e^{2x}-e^{-2x})\cr&=\sinh 2x=LHS.\cr}

(ii) Similarly, we have

RHS=cosh2x+sinh2x=14(ex+e-x)2+14(ex-e-x)2=14(e2x+2+e-2x+e2x-2+e-2x)=12(e2x+e-2x)=cosh2x=LHS.\eqalignno{RHS&=\cosh^{2}x+\sinh^{2}x\cr&={{1}\over{4}}(e^{x}+e^{-x})^{2}+{{1}% \over{4}}(e^{x}-e^{-x})^{2}\cr&={{1}\over{4}}(e^{2x}+2+e^{-2x}+e^{2x}-2+e^{-2x% })\cr&={{1}\over{2}}(e^{2x}+e^{-2x})\cr&=\cosh 2x=LHS.\cr}

W2.2. (i)

(ii) The Heaviside function is discontinuous at x=0x=0, since there it jumps from 00 to 11; indeed, h(x)0h(x)\rightarrow 0 as x0-x\rightarrow 0-, whereas h(x)1h(x)\rightarrow 1 as x0+.x\rightarrow 0+. The graph of hh has a step at x=0.x=0.

The function ff is continuous as one can draw its graph without lifting pen from paper. In particular, the right and left halves of the graph meet at x=0x=0 since f(x)0f(x)\rightarrow 0 as x0+x\rightarrow 0+ and f(x)0f(x)\rightarrow 0 as x0-x\rightarrow 0-.

(iii) The switch represented by ff would be more appropriate since it increases the current smoothly, whereas the switch hh would give a surge of current.

W2.3. Let x=sinhyx=\sinh y. Then

LHS=log(x+x2+1)=log(sinhy+sinh2y+1)which reduces, since sinh2y+1=cosh2y\sinh^{2}y+1=\cosh^{2}y, to=log(sinhy+coshy)=log(12(ey-e-y)+12(ey+e-y))=logey=y=sinh-1x=RHS.\eqalign{{\hbox{LHS}}&=\log\bigl(x+\sqrt{x^{2}+1}\bigr)\cr&=\log\bigl(\sinh y+% \sqrt{\sinh^{2}y+1}\bigr)\cr\omit\span\omit\@@LTX@noalign{{\hbox{which reduces% , since $\sinh^{2}y+1=\cosh^{2}y$, to}}}\\ \cr&=\log\bigl(\sinh y+\cosh y\bigr)\cr&=\log\Bigl({{1}\over{2}}\bigl(e^{y}-e^% {-y}\bigr)+{{1}\over{2}}\bigl(e^{y}+e^{-y}\bigr)\Bigr)\cr&=\log e^{y}=y\cr&=% \sinh^{-1}x={\hbox{RHS}}.\cr}

W2.4 With cos:[0,π][-1,1]\cos:[0,\pi]\rightarrow[-1,1] strictly decreasing, the inverse function is cos-1:[-1,1][0,π]\cos^{-1}:[-1,1]\rightarrow[0,\pi] which has domain [-1,1][-1,1] and codomain [0,π][0,\pi].

W2.5 (i) We have f(t)=(1+e-t)-1f(t)=(1+e^{-t})^{-1}, so by the chain rule

f(t)=-(1+e-t)-2(-e-t)=(1+e-t)-2e-tf^{\prime}(t)=-(1+e^{-t})^{-2}(-e^{-t})=(1+e^{-t})^{-2}e^{-t}

while

f(t)(1-f(t))=11+e-t(1-11+e-t)=e-t(1+e-t)2;f(t)\bigl(1-f(t)\bigr)={{1}\over{1+e^{-t}}}\Bigl(1-{{1}\over{1+e^{-t}}}\Bigr)=% {{e^{-t}}\over{(1+e^{-t})^{2}}};

hence

f(t)=f(t)(1-f(t)).f^{\prime}(t)=f(t)\bigl(1-f(t)\bigr).

(ii) We consider

g(t)=f(t)-12=11+e-t-12=1-e-t2(1+e-t);g(t)=f(t)-{{1}\over{2}}={{1}\over{1+e^{-t}}}-{{1}\over{2}}={{1-e^{-t}}\over{2(% 1+e^{-t})}};

while

g(-t)=f(-t)-12=11+et-12=1-et2(1+et)=e-t-12(1+e-t);g(-t)=f(-t)-{{1}\over{2}}={{1}\over{1+e^{t}}}-{{1}\over{2}}={{1-e^{t}}\over{2(% 1+e^{t})}}={{e^{-t}-1}\over{2(1+e^{-t})}};

so

g(t)=-g(-t).g(t)=-g(-t).

(iii) Let y=f(x)y=f(x), so

y=11+e-x,y={{1}\over{1+e^{-x}}},

hence

1+e-x=1y1+e^{-x}={{1}\over{y}}
soe-x=1y-1=1-yy{\hbox{so}}\quad e^{-x}={{1}\over{y}}-1={{1-y}\over{y}}

hence

ex=y1-y,e^{x}={{y}\over{1-y}},

hence

x=logy1-y.x=\log{{y}\over{1-y}}.

W2.6 We have sech-1:(0,1][0,){\hbox{sech}}^{-1}:(0,1]\rightarrow[0,\infty). Suppose that when x=sech-1yx={\hbox{sech}}^{-1}y, we have y=sechxy={\hbox{sech}}\,x, so

1-y2=1-sech2x=1-1cosh2x=cosh2x-1cosh2x=sinh2xcosh2x\eqalignno{1-y^{2}&=1-{\hbox{sech}}^{2}x\cr&=1-{{1}\over{\cosh^{2}x}}\cr&={{% \cosh^{2}x-1}\over{\cosh^{2}x}}\cr&={{\sinh^{2}x}\over{\cosh^{2}x}}\cr}

so

1+1-y2y=1+sinhxcoshx1coshx=sinhx+coshx=ex,\eqalignno{{{1+\sqrt{1-y^{2}}}\over{y}}&={{1+{{\sinh x}\over{\cosh x}}}\over{{% {1}\over{\cosh x}}}}\cr&=\sinh x+\cosh x\cr&=e^{x},\cr}

hence

log(1+1-y2y)=logex=x,\log\Bigl({{1+\sqrt{1-y^{2}}}\over{y}}\Bigr)=\log e^{x}=x,

hence

x=sech-1y=log(1+1-y2y).x={\hbox{sech}}^{-1}y=\log\Bigl({{1+\sqrt{1-y^{2}}}\over{y}}\Bigr).

W2.7.

f(x)=2x2-4x-30x+1.f(x)={{2x^{2}-4x-30}\over{x+1}}.

(i) When x=0x=0, y=-30y=-30, so the intercept with the yy axis is at (0,-30)(0,-30); also y=0y=0 if 2x2-4x-30=0,2x^{2}-4x-30=0, so x2-2x-15=0x^{2}-2x-15=0, so x=5x=5 or x=-3x=-3 and the intercepts with the xx axis are at (5,0)(5,0) and (-3,0)(-3,0).

(ii) By dividing, we obtain

y=2x2-4x-30x+1=2x-6-24x+1.y={{2x^{2}-4x-30}\over{x+1}}=2x-6-{{24}\over{x+1}}.

As x(-1)-x\rightarrow(-1)-, we have yy\rightarrow\infty; whereas as x(-1)+x\rightarrow(-1)+, we have y-y\rightarrow-\infty. Hence x=-1x=-1 is a vetical asymptote to the graph.

(iii) As x±x\rightarrow\pm\infty, -24/(x+1)0-24/(x+1)\rightarrow 0, so the line y=2x-6y=2x-6 is close to the graph of f(x)f(x). (Hence y=2x-6y=2x-6 is an asymptote to the graph.) Hence f(x)f(x)\rightarrow\infty as xx\rightarrow\infty, and f(x)-f(x)\rightarrow-\infty as x-x\rightarrow-\infty.


W2.8. (i) The function

f(x)=x+1x2-x-6f(x)={{x+1}\over{x^{2}-x-6}}

is defined, provided that the denominator is non-zero. The quadratic factors as

x2-x-6=(x-3)(x+2)x^{2}-x-6=(x-3)(x+2)

so that the roots are x=3,-2x=3,-2; hence the domian of definition of ff is (-,){3,-2}(-\infty,\infty)\setminus\{3,-2\}.

(ii) The intercept with the yy axis is at f(0)=-1/6f(0)=-1/6, and the intercept with the xx-axis is at x=-1x=-1.

Asymptotes are the xx-axis, since

f(x)0+asx, andf(x)0-asx-,f(x)\rightarrow 0+\quad{\hbox{as}}\quad x\rightarrow\infty,\quad{\hbox{and}}% \quad f(x)\rightarrow 0-\quad{\hbox{as}}\quad x\rightarrow-\infty,

and the vertical asymptotes x=3x=3 and x=-2x=-2 since

f(x)=x+1(x-3)(x+2){as x3+x\rightarrow 3+;-as x3-x\rightarrow 3-;as x(-2)+x\rightarrow(-2)+;-as x(-2)-.x\rightarrow(-2)-.f(x)={{x+1}\over{(x-3)(x+2)}}\rightarrow\cases{\infty&\hbox{as $x\rightarrow 3% +$;}\cr-\infty&\hbox{as $x\rightarrow 3-$;}\cr\infty&\hbox{as $x\rightarrow(-2% )+$;}\cr-\infty&\hbox{as $x\rightarrow(-2)-.$}\cr}