MATH101 Calculus Workshop Exercise Solutions 1

W1.1. The long division algorithm is as follows.

2X2+11X+27X-3|2X3+5X2-6X-42X3-6X211X2-6X-411X2-33X27X-427X-8177\matrix{&&&2X^{2}&+11X&+27\cr X-3&|&2X^{3}&+5X^{2}&-6X&-4\cr&&2X^{3}&-6X^{2}&&% \cr&&&11X^{2}&-6X&-4\cr&&&11X^{2}&-33X&\cr&&&&27X&-4\cr&&&&27X&-81\cr&&&&&77\cr}

Hence the remainder is 7777.

(ii) The remainder theorem gives

f(X)=(X-3)q(X)+f(3)f(X)=(X-3)q(X)+f(3)

where the remainder is

f(3)=233+532-63-4=54+45-18-4=77,\eqalignno{f(3)&=2\cdot 3^{3}+5\cdot 3^{2}-6\cdot 3-4\cr&=54+45-18-4\cr&=77,\cr}

confirming the previous result.

W1.2. We have

X3-5X+6X2+3X+2=X-3+2X+12X2+3X+2.{{X^{3}-5X+6}\over{X^{2}+3X+2}}=X-3+{{2X+12}\over{X^{2}+3X+2}}.

The computation can be written in the following array.

X-3X2+3X+2|X3    -5X+6X3+3X2+2X-3X2-7X+6-3X2-9X-62X+12\eqalign{&\quad X-3\cr X^{2}+3X+2\quad|&\quad X^{3}\qquad\quad-5X+6\cr&\quad X% ^{3}+3X^{2}+2X\cr&\qquad-3X^{2}-7X+6\cr&\qquad-3X^{2}-9X-6\cr&\qquad\qquad 2X+% 12\cr}

W1.3. (i) Let PnP_{n} be the statement

3+7++(4n-1)=n(2n+1).3+7+\dots+(4n-1)=n(2n+1).

Basis of induction:P1P_{1} asserts that 3=1(2+1)3=1(2+1), which is true.

Induction step: suppose that PkP_{k} holds for some k1k\geq 1, and consider Pk+1P_{k+1}. We have, by PkP_{k},

3+7++(4k-1)+(4k+3)=(3+7++(4k-1))+(4k+3)=k(2k+1)+4k+3=2k2+5k+3=(k+1)(2k+3).\eqalign{3+7+\dots+(4k-1)+(4k+3)&=\bigl(3+7+\dots+(4k-1)\bigr)+(4k+3)\cr&=k(2k% +1)+4k+3\cr&=2k^{2}+5k+3\cr&=(k+1)(2k+3).\cr}

hence Pk+1P_{k+1} holds; hence PnP_{n} holds for all n1n\geq 1 by induction.

(ii) Let PnP_{n} be the statement

12+23++n(n+1)=13n(n+1)(n+2).1\cdot 2+2\cdot 3+\dots+n(n+1)={{1}\over{3}}n(n+1)(n+2).

Basis of induction:P1P_{1} asserts that 1.2=13.1.2.31.2={{1}\over{3}}.1.2.3, which is true.

Induction step: suppose that PkP_{k} holds for some integer k1k\geq 1 and consider Pk+1.P_{k+1}. We have, by PkP_{k},

12+23+k(k+1)+(k+1)(k+2)=(12+23+k(k+1))+(k+1)(k+2)=13k(k+1)(k+2)+(k+1)(k+2)=13(k+1)(k+2)(k+3).\eqalign{1\cdot 2+2\cdot 3+\dots k(k+1)+(k+1)(k+2)&=\bigl(1\cdot 2+2\cdot 3+% \dots k(k+1)\bigr)+(k+1)(k+2)\cr&={{1}\over{3}}k(k+1)(k+2)+(k+1)(k+2)\cr&={{1}% \over{3}}(k+1)(k+2)(k+3).\cr}

Hence Pk+1P_{k+1} holds; hence PnP_{n} holds for all n1n\geq 1 by induction.


W1.4. Let PnP_{n} be the statement

a+ar+ar2+arn-1=a1-rn1-r.a+ar+ar^{2}+\dots ar^{n-1}=a{{1-r^{n}}\over{1-r}}.

Basis of induction.P1P_{1} asserts that

a=a1-r1-r,a=a{{1-r}\over{1-r}},

which is true.

Induction step. Suppose that PkP_{k} holds for some kk and consider Pk+1P_{k+1}. We have, by PkP_{k},

a+ar+ark-1+ark=(a+ar++ark-1)+ark=a1-rk1-r+ark=a1-rk+rk-rk+11-r=a1-rk+11-r.\eqalign{a+ar+\dots ar^{k-1}+ar^{k}&=\bigl(a+ar+\dots+ar^{k-1}\bigr)+ar^{k}\cr% &=a{{1-r^{k}}\over{1-r}}+ar^{k}\cr&=a{{1-r^{k}+r^{k}-r^{k+1}}\over{1-r}}\cr&=a% {{1-r^{k+1}}\over{1-r}}.\cr}

Hence Pk+1P_{k+1} holds; hence PnP_{n} holds for all natural integers nn by induction.


W1.5. The roots of f(X)=0f(X)=0 are -1,2,-3-1,2,-3 and 44. If we happen to spot -1-1 as a root, then we proceed to factorize f(X)f(X) step-by-step as

f(X)=X4-2X3-13X2+14X+24=(X+1)(X3-3X2-10X+24)=(X+1)(X-2)(X2-X-12)=(X+1)(X-2)(X+3)(X-4).\eqalignno{f(X)&=X^{4}-2X^{3}-13X^{2}+14X+24\cr&=(X+1)(X^{3}-3X^{2}-10X+24)\cr% &=(X+1)(X-2)(X^{2}-X-12)\cr&=(X+1)(X-2)(X+3)(X-4).\cr}

W1.6. Let PnP_{n} be the statement

r=1n(-1)r-1r2=(-1)n-12n(n+1).\sum_{r=1}^{n}(-1)^{r-1}r^{2}={{(-1)^{n-1}}\over{2}}n(n+1).

Basis of induction:P1P_{1} asserts that 1=(1/2)(-1)021=(1/2)(-1)^{0}2, which is true.

Induction step: suppose that PnP_{n} holds for some n1n\geq 1, and consider Pn+1P_{n+1}. We have, by PnP_{n},

r=1n+1(-1)r-1r2=r=1n(-1)r-1r2+(-1)n(n+1)2=(-1)n-12n(n+1)+(-1)n(n+1)2,=(-1)n2(n+1)(-n+2(n+1))=(-1)n2(n+1)(n+2)\eqalign{\sum_{r=1}^{n+1}(-1)^{r-1}r^{2}&=\sum_{r=1}^{n}(-1)^{r-1}r^{2}+(-1)^{% n}(n+1)^{2}\cr&={{(-1)^{n-1}}\over{2}}n(n+1)+(-1)^{n}(n+1)^{2},\cr&={{(-1)^{n}% }\over{2}}(n+1)\bigl(-n+2(n+1)\bigr)\cr&={{(-1)^{n}}\over{2}}(n+1)(n+2)\cr}

hence Pn+1P_{n+1} holds; hence PnP_{n} holds for all n1n\geq 1 by induction.

W1.7

11  1  1    1112  3  4  5      613  6  10    152114  10  20  35  5615  15  35  70  12616  21  56  126  252\eqalignno{1&\qquad 1\qquad 1\qquad 1\qquad\quad 1\,\,\,\,\,\qquad 1\cr 1&% \qquad 2\qquad 3\qquad 4\quad\qquad 5\qquad\,\,\,\,6\cr 1&\qquad 3\qquad 6% \qquad 10\qquad\,\,15\,\,\,\qquad 21\cr 1&\qquad 4\qquad 10\qquad 20\qquad 35% \qquad 56\cr 1&\qquad 5\qquad 15\qquad 35\qquad 70\qquad 126\cr 1&\qquad 6% \qquad 21\qquad 56\qquad 126\qquad 252\cr}

W1.8(Sums of squares).

We recall that k=1nk2=6-1n(n+1)(2n+1)\sum_{k=1}^{n}k^{2}=6^{-1}n(n+1)(2n+1), so

k=1n(3k2-5)=3k=1nk2-5k=1n1=12n(n+1)(2n+1)-5n=12n((n+1)(2n+1)-10)=12n(2n2+3n-9)=12n(n+3)(2n-3).\eqalignno{\sum_{k=1}^{n}(3k^{2}-5)&=3\sum_{k=1}^{n}k^{2}-5\sum_{k=1}^{n}1\cr&% ={{1}\over{2}}n(n+1)(2n+1)-5n\cr&={{1}\over{2}}n\Bigl((n+1)(2n+1)-10\Bigr)\cr&% ={{1}\over{2}}n(2n^{2}+3n-9)\cr&={{1}\over{2}}n(n+3)(2n-3).\cr}

W1.9.(Geometric series)

This is a geometric series with a=x2a=x^{2} and r=x2r=x^{2}, so 0r<10\leq r<1 and

a1-r=x21-x2.{{a}\over{1-r}}={{x^{2}}\over{1-x^{2}}}.

W1.10 The nthn^{th} term of the series can be written as partial fractions

1n(n+1)(n+2)=An+Bn+1+Cn+2{{1}\over{n(n+1)(n+2)}}={{A}\over{n}}+{{B}\over{n+1}}+{{C}\over{n+2}}

where

1=A(n+1)(n+2)+Bn(n+2)+Cn(n+1)1=A(n+1)(n+2)+Bn(n+2)+Cn(n+1)

so we have coefficients

n2:0=A+B+Cn:0=3A+2B+C1:1=2A\eqalignno{n^{2}:&0=A+B+C\cr n:&0=3A+2B+C\cr 1:&1=2A\cr}

hence

0=A+B+C0=2A+B1=2A\eqalignno{0&=A+B+C\cr 0&=2A+B\cr 1&=2A\cr}

so

A=1/2, B=-1, C=1/2;A=1/2,\quad B=-1,\quad C=1/2;
1n(n+1)(n+2)=1/2n+-1n+1+1/2n+2.{{1}\over{n(n+1)(n+2)}}={{1/2}\over{n}}+{{-1}\over{n+1}}+{{1/2}\over{n+2}}.

We can write the sum to nn terms as

1123=1/21+-12+1/23+1234+1/22+-13+1/24+1345+1/23+-14+1/25+1456+1/24+-15+1/26+1(n-1)n(n+1)+1/2n-1+-1n+1/2n+1+1n(n+1)(n+2)+1/2n+-1n+1+1/2n+2\eqalignno{{{1}\over{1\cdot 2\cdot 3}}&=\quad{{1/2}\over{1}}+{{-1}\over{2}}+{{% 1/2}\over{3}}\cr+{{1}\over{2\cdot 3\cdot 4}}&\qquad+{{1/2}\over{2}}+{{-1}\over% {3}}+{{1/2}\over{4}}\cr+{{1}\over{3\cdot 4\cdot 5}}&\qquad+{{1/2}\over{3}}+{{-% 1}\over{4}}+{{1/2}\over{5}}\cr+{{1}\over{4\cdot 5\cdot 6}}&\qquad+{{1/2}\over{% 4}}+{{-1}\over{5}}+{{1/2}\over{6}}\cr\vdots&\qquad\vdots\cr+{{1}\over{(n-1)% \cdot n\cdot(n+1)}}&\qquad+{{1/2}\over{n-1}}+{{-1}\over{n}}+{{1/2}\over{n+1}}% \cr+{{1}\over{n\cdot(n+1)\cdot(n+2)}}&\qquad+{{1/2}\over{n}}+{{-1}\over{n+1}}+% {{1/2}\over{n+2}}\cr}

so that when we add up, the terms on the cross diagonals with three terms cancel, leaving only the terms in the top left corner and the bottom right corner; so the nthn^{th} partial sum is

1123+1234+1345++1n(n+1)(n+2){{1}\over{1\cdot 2\cdot 3}}+{{1}\over{2\cdot 3\cdot 4}}+{{1}\over{3\cdot 4% \cdot 5}}+\dots+{{1}\over{n\cdot(n+1)\cdot(n+2)}}
=12-14+-1/2n+1+1/2n+2;={{1}\over{2}}-{{1}\over{4}}+{{-1/2}\over{n+1}}+{{1/2}\over{n+2}};

and as nn\rightarrow\infty, we obtain the sum

1123+1234+1345+=14.{{1}\over{1\cdot 2\cdot 3}}+{{1}\over{2\cdot 3\cdot 4}}+{{1}\over{3\cdot 4% \cdot 5}}+\dots={{1}\over{4}}.