MATH101 Calculus Assessed Exercise 4 Solutions

[10] total for exercise


A4.1. (i) Let PnP_{n} be the statement

dndxnlog(1+x)=(-1)n-1(n-1)!(1+x)n  (-1<x).{{d^{n}}\over{dx^{n}}}\log(1+x)={{(-1)^{n-1}(n-1)!}\over{(1+x)^{n}}}\qquad(-1<% x).

Basis of induction:P1P_{1} asserts that

ddxlog(1+x)=11+x,{{d}\over{dx}}\log(1+x)={{1}\over{1+x}},

which is true.

Induction step: Assume that PnP_{n} is true, so

dndxnlog(1+x)=(-1)n-1(n-1)!(1+x)n  (-1<x).{{d^{n}}\over{dx^{n}}}\log(1+x)={{(-1)^{n-1}(n-1)!}\over{(1+x)^{n}}}\qquad(-1<% x).

Now differentiate both sides to obtain

ddxdndxnlog(1+x)=(-n)(-1)n-1(n-1)!(1+x)n+1  (-1<x);{{d}\over{dx}}{{d^{n}}\over{dx^{n}}}\log(1+x)={{(-n)(-1)^{n-1}(n-1)!}\over{(1+% x)^{n+1}}}\qquad(-1<x);

so

dn+1dxn+1log(1+x)=(-1)n(n)!(1+x)n+1  (-1<x);{{d^{n+1}}\over{dx^{n+1}}}\log(1+x)={{(-1)^{n}(n)!}\over{(1+x)^{n+1}}}\qquad(-% 1<x);

hence Pn+1P_{n+1} is true and hence result by induction.

[2] marks

(ii) The Maclaurin series is

f(x)=f(0)+f(0)x+f′′(0)2!x2++f(n)(0)n!xn+.f(x)=f(0)+f^{\prime}(0)x+{{f^{\prime\prime}(0)}\over{2!}}x^{2}+\dots+{{f^{(n)}% (0)}\over{n!}}x^{n}+\dots.

so here we have

log(1+x)=log1+x-1!x22!+2!x33!-+(-1)n-1(n-1)!xnn!+=x-x22+x33-+(-1)n-1xnn+.\eqalignno{\log(1+x)&=\log 1+x-{{1!x^{2}}\over{2!}}+{{2!x^{3}}\over{3!}}-\dots% +{{(-1)^{n-1}(n-1)!x^{n}}\over{n!}}+\dots\cr&=x-{{x^{2}}\over{2}}+{{x^{3}}% \over{3}}-\dots+{{(-1)^{n-1}x^{n}}\over{n}}+\dots.\cr}

[2] marks

(iii) Substituting -x-x in place of xx, we obtain the series

log(1+x)=-x-x22-x33--xnn-.\log(1+x)=-x-{{x^{2}}\over{2}}-{{x^{3}}\over{3}}-\dots-{{x^{n}}\over{n}}-\dots.

[1] marks

Total [5] marks for question


A4.2 (i) Let PnP_{n} be the statement

1+eiθ++ei(n-1)θ=1-einθ1-eiθ.1+e^{i\theta}+\dots+e^{i(n-1)\theta}={{1-e^{in\theta}}\over{1-e^{i\theta}}}.

Basis of induction.P1P_{1} asserts that 1=11=1, which holds.

Induction step Suppose that PnP_{n} holds for some nn, and consider Pn+1P_{n+1}; then

(1+eiθ++ei(n-1)θ)+einθ=1-einθ1-eiθ+einθ=1-einθ+einθ-e-i(n+1)θ1-eiθ=1-ei(n+1)θ1-eiθ;\eqalignno{\bigl(1+e^{i\theta}+\dots+e^{i(n-1)\theta}\bigr)+e^{in\theta}&={{1-% e^{in\theta}}\over{1-e^{i\theta}}}+e^{in\theta}\cr&={{1-e^{in\theta}+e^{in% \theta}-e^{-i(n+1)\theta}}\over{1-e^{i\theta}}}\cr&={{1-e^{i(n+1)\theta}}\over% {1-e^{i\theta}}};\cr}

hence Pn+1P_{n+1} holds and hence result by induction.

[1]

(ii) The complex conjugate of eiθ-1=cosθ+isinθ-1e^{i\theta}-1=\cos\theta+i\sin\theta-1 is cosθ-isinθ-1=e-iθ-1\cos\theta-i\sin\theta-1=e^{-i\theta}-1.

(iii) We have

1-einθ1-eiθ=(1-einθ)(1-e-iθ)(1-eiθ)(1-e-iθ)=1+ei(n-1)θ-einθ-e-iθ2-eiθ-e-iθ{{1-e^{in\theta}}\over{1-e^{i\theta}}}={{(1-e^{in\theta})(1-e^{-i\theta})}% \over{(1-e^{i\theta})(1-e^{-i\theta})}}={{1+e^{i(n-1)\theta}-e^{in\theta}-e^{-% i\theta}}\over{2-e^{i\theta}-e^{-i\theta}}}

[1]

and eikθ=coskθ+isinkθe^{ik\theta}=\cos k\theta+i\sin k\theta, so the real parts are

1+cosθ+cos2θ++cos(n-1)θ=1+cos(n-1)θ-cosnθ-cosθ2-2cosθ.1+\cos\theta+\cos 2\theta+\dots+\cos(n-1)\theta={{1+\cos(n-1)\theta-\cos n% \theta-\cos\theta}\over{2-2\cos\theta}}.

The imaginary parts are

sinθ+sin2θ++sin(n-1)θ=sin(n-1)θ-sinnθ+sinθ2-2cosθ\sin\theta+\sin 2\theta+\dots+\sin(n-1)\theta={{\sin(n-1)\theta-\sin n\theta+% \sin\theta}\over{2-2\cos\theta}}

[1]

(One can reduce this further by considering addition rules with sinθ/2\sin\theta/2).

Total [3] marks for question

A4.3 (i) The derivative f(x)f^{\prime}(x) is a polynomial of degree n-1n-1, so the equation f(x)=0f^{\prime}(x)=0 has at most n-1n-1 real roots by the remainder theorem.

[1]

(ii) Every local maximum, local minimum and inflexion gives a stationary point of ff; that is a real root of f(x)=0f^{\prime}(x)=0. Hence by (i),

a+b+cn-1.a+b+c\leq n-1.

[1]

[2] marks for question