MATH101 Calculus Assessed Exercise 3 Solutions

A3.1.

(i) We write

f(x)=x1/2-2x-4+2logx+log3,f(x)=x^{1/2}-2x^{-4}+2\log x+\log 3,

so

f(x)=2-1x-1/2+8x-5+2x-1.f^{\prime}(x)=2^{-1}x^{-1/2}+8x^{-5}+2x^{-1}.

[1] mark

(ii) By the product rule, and then the chain rule, we have

ddx(e2x3cosx)=(ddxe2x3)cosx+e2x3ddxcosx=e2x3(6x2cosx-sinx).\eqalign{{{d}\over{dx}}\Bigl(e^{2x^{3}}\cos x\Bigr)&=\Bigl({{d}\over{dx}}e^{2x% ^{3}}\Bigr)\cos x+e^{2x^{3}}{{d}\over{dx}}\cos x\cr&=e^{2x^{3}}\bigl(6x^{2}% \cos x-\sin x\bigr).\cr}

[1] mark

(iii) By the chain rule

ddx((cos5x)3+e2x7)=-15sin5xcos25x+14x6e2x7.{{d}\over{dx}}\Bigl(\bigl(\cos 5x\bigr)^{3}+e^{2x^{7}}\Bigr)=-15\sin 5x\cos^{2% }5x+14x^{6}e^{2x^{7}}.

[1] mark

(iv) By the quotient rule,

ddxsinx37x=(ddxsinx3)x-sinx3dxdx7x2=3x3cosx3-sinx37x2.\eqalign{{{d}\over{dx}}{{\sin x^{3}}\over{7x}}&={{({{d}\over{dx}}\sin x^{3})x-% \sin x^{3}{{dx}\over{dx}}}\over{7x^{2}}}\cr&={{3x^{3}\cos x^{3}-\sin x^{3}}% \over{7x^{2}}}.\cr}

[1] mark

Total [4] marks for question


A3.2 Note that

ddxsechx=ddx1coshx=-sinhxcosh2x;\eqalignno{{{d}\over{dx}}{\hbox{sech}}\,x&={{d}\over{dx}}{{1}\over{\cosh x}}% \cr&={{-\sinh x}\over{\cosh^{2}x}};\cr}

so

ddxf(x)=ddx(sechx)2=-2sechx(sechxtanhx)=-2sinhxcosh3x;\eqalignno{{{d}\over{dx}}f(x)&={{d}\over{dx}}\Bigl({\hbox{sech}}\,x\Bigr)^{2}% \cr&=-2{\hbox{sech}}\,x({\hbox{sech}}\,x\tanh x)\cr&={{-2\sinh x}\over{\cosh^{% 3}x}};\cr}

[1]

(any equivalent form is acceptable) hence

(f(x))2=4sinh2xcosh6x,(f^{\prime}(x))^{2}={{4\sinh^{2}x}\over{\cosh^{6}x}},

while

4f(x)2(1-f(x))=4sech4x(1-sech2x)=4sech4xtanh2x=4sinh2xcosh6x\eqalignno{4f(x)^{2}(1-f(x))&=4{\hbox{sech}}^{4}x(1-{\hbox{sech}}^{2}x)\cr&=4{% \hbox{sech}}^{4}x\tanh^{2}x\cr&={{4\sinh^{2}x}\over{\cosh^{6}x}}\cr}

[1]

(any equivalent form is acceptable) hence

f(x)2=4f(x)2(1-f(x)).f^{\prime}(x)^{2}=4f(x)^{2}(1-f(x)).

Total [2] marks for question

A3.3 Let MM be the maximum charge, QQ be the charge at time xx and R=M-QR=M-Q. Then

dRdx=-kR,{{dR}\over{dx}}=-kR,

where kk is to be found. The solution is

R=R0e-kxR=R_{0}e^{-kx}

where R(0)=R0R(0)=R_{0}; hence

M-Q=(M-Q0)e-kxM-Q=(M-Q_{0})e^{-kx}

[1]

where Q0=M-R0=10M/100Q_{0}=M-R_{0}=10M/100, and Q(1)=50M/100,Q(1)=50M/100, so R0=90M/100R_{0}=90M/100 and

50M=90Me-k,50M=90Me^{-k},

so k=log(9/5).k=\log(9/5). We look for xx such that Q=90M/100Q=90M/100, so

10M=90Me-kx;10M=90Me^{-kx};

hence

x=log9k=log9log(9/5)=3.781hours.x={{\log 9}\over{k}}={{\log 9}\over{\log(9/5)}}=3.781\quad{\hbox{hours}}.

[1]

[2] marks for question

A3.4 (i) By the quotient rule, we have

ddxcothx=ddxcoshxsinhx=(ddxcoshx)sinhx-coshxddxsinhxsinh2x=sinh2x-cosh2xsinh2x=-1sinh2x=-cosech2x  (x0).\eqalignno{{{d}\over{dx}}\coth x&={{d}\over{dx}}{{\cosh x}\over{\sinh x}}\cr&=% {{({{d}\over{dx}}\cosh x)\sinh x-\cosh x{{d}\over{dx}}\sinh x}\over{\sinh^{2}x% }}\cr&={{\sinh^{2}x-\cosh^{2}x}\over{\sinh^{2}x}}\cr&={{-1}\over{\sinh^{2}x}}% \cr&=-{\hbox{cosech}}^{2}\,x\qquad(x\neq 0).\cr}

[1]

(ii) We have

cosh2y-sinh2y=1,\cosh^{2}y-\sinh^{2}y=1,

so

coth2y-1=cosech2y.\coth^{2}y-1={\hbox{cosech}}^{2}\,y.

Let y=coth-1xy=\coth^{-1}x so x=cothyx=\coth y and

dxdy=-cosech2y{{dx}\over{dy}}=-{\hbox{cosech}}^{2}\,y
dxdy=1-coth2y=1-x2,{{dx}\over{dy}}=1-\coth^{2}y=1-x^{2},

so

dydx=1/dxdy=-11-x2{{dy}\over{dx}}=1/{{dx}\over{dy}}={{-1}\over{1-x^{2}}}

hence

dydx=1x2-1{{dy}\over{dx}}={{1}\over{x^{2}-1}}

[1]

[2] marks for question

Total [10] marks

this is a standard calculus exercise