MATH101 Calculus Assessed Exercise Solutions 2

Total [10] marks

Please mark positively by awarding marks for correct work,

not by deducting marks for errors.

State mark totals for questions and total for exercise.

A2.1. Recall that coshx=(ex+e-x)/2\cosh x=(e^{x}+e^{-x})/2 and that sinhx=(ex-e-x)/2.\sinh x=(e^{x}-e^{-x})/2.

(i) Hence

LHS=cosh2x-sinh2x=14(e2x+2+e-2x)-14(e2x-2+e-2x)=1=RHS,\eqalign{{\hbox{LHS}}&=\cosh^{2}x-\sinh^{2}x\cr&={{1}\over{4}}\bigl(e^{2x}+2+e% ^{-2x}\bigr)-{{1}\over{4}}\bigl(e^{2x}-2+e^{-2x}\bigr)\cr&=1={\hbox{RHS}},\cr}

as required.

[1] for calculation

Solutions with incorrect use of implication signs do not have correct logic.

(ii) Here we have

RHS=sinhxcoshy-coshxsinhy=14(ex-e-x)(ey+e-y)-14(ex+e-x)(ey-e-y)=14(ex-y+ex+y-e-x-y-e-x+y+ex-y-ex+y+e-x-y-e-x+y)=14(2ex-y-2e-x+y)=sinh(x-y)=LHS,\eqalign{{\hbox{RHS}}&=\sinh x\cosh y-\cosh x\sinh y\cr&={{1}\over{4}}\bigl(e^% {x}-e^{-x}\bigr)\bigl(e^{y}+e^{-y}\bigr)-{{1}\over{4}}\bigl(e^{x}+e^{-x}\bigr)% \bigl(e^{y}-e^{-y}\bigr)\cr&={{1}\over{4}}\bigl(e^{x-y}+e^{x+y}-e^{-x-y}-e^{-x% +y}+e^{x-y}-e^{x+y}+e^{-x-y}-e^{-x+y}\bigr)\cr&={{1}\over{4}}\bigl(2e^{x-y}-2e% ^{-x+y}\bigr)\cr&=\sinh(x-y)={\hbox{LHS}},\cr}

as required.

[2] for correct calculation

(iii) In this case we can use the definitions of the hyperbolic functions and calculate

RHS=tanhx-tanhy1-tanhxtanhy=ex-e-xex+e-x-ey-e-yey+e-y1-ex-e-xex+e-xey-e-yey+e-y=ex-e-xex+e-x-ey-e-yey+e-y1-ex-e-xex+e-xey-e-yey+e-y(ex+e-x)(ey+e-y)(ex+e-x)(ey+e-y)which simplifies when we take common denominators of the fractions to=(ex-e-x)(ey+e-y)-(ex+e-x)(ey+e-y)(ex+e-x)(ey+e-y)-(ex-e-x)(ey+e-y)=ex-y+ex+y-e-x-y-e-x+y+ex-y-ex+y+e-x-y-e-x+yex-y+ex+y+e-x-y+e-x+y+ex-y-ex+y-e-x-y+e-x+y=ex-y-e-x+yex-y+e-x+y=tanh(x+y)=LHS.\eqalign{{\hbox{RHS}}&={{\tanh x-\tanh y}\over{1-\tanh x\tanh y}}\cr&={{{{e^{x% }-e^{-x}}\over{e^{x}+e^{-x}}}-{{e^{y}-e^{-y}}\over{e^{y}+e^{-y}}}}\over{1-{{e^% {x}-e^{-x}}\over{e^{x}+e^{-x}}}{{e^{y}-e^{-y}}\over{e^{y}+e^{-y}}}}}\cr&={{{{e% ^{x}-e^{-x}}\over{e^{x}+e^{-x}}}-{{e^{y}-e^{-y}}\over{e^{y}+e^{-y}}}}\over{1-{% {e^{x}-e^{-x}}\over{e^{x}+e^{-x}}}{{e^{y}-e^{-y}}\over{e^{y}+e^{-y}}}}}{{(e^{x% }+e^{-x})(e^{y}+e^{-y})}\over{(e^{x}+e^{-x})(e^{y}+e^{-y})}}\cr\omit\span\omit% \@@LTX@noalign{{\hbox{which simplifies when we take common denominators of the% fractions to}}}\\ &={{(e^{x}-e^{-x})(e^{y}+e^{-y})-(e^{x}+e^{-x})(e^{y}+e^{-y})}\over{(e^{x}+e^{% -x})(e^{y}+e^{-y})-(e^{x}-e^{-x})(e^{y}+e^{-y})}}\cr&={{e^{x-y}+e^{x+y}-e^{-x-% y}-e^{-x+y}+e^{x-y}-e^{x+y}+e^{-x-y}-e^{-x+y}}\over{e^{x-y}+e^{x+y}+e^{-x-y}+e% ^{-x+y}+e^{x-y}-e^{x+y}-e^{-x-y}+e^{-x+y}}}\cr&={{e^{x-y}-e^{-x+y}}\over{e^{x-% y}+e^{-x+y}}}\cr&=\tanh(x+y)={\hbox{LHS}}.\cr}

An equivalent, but more elegant, argument is to use

RHS=sinhxcoshx-sinhycoshy1-sinhxcoshxsinhycoshy,an expression which we take over common denominators to get=sinhxcoshy-coshxsinhycoshxcoshy-sinhysinhxan expression which reduces by part (ii) and a result of lectures to=sinh(x-y)cosh(x-y)=tanh(x-y)=LHS.\eqalign{{\hbox{RHS}}&={{{{\sinh x}\over{\cosh x}}-{{\sinh y}\over{\cosh y}}}% \over{1-{{\sinh x}\over{\cosh x}}{{\sinh y}\over{\cosh y}}}},\cr\omit\span% \omit\@@LTX@noalign{\hbox{an expression which we take over common denominators% to get}}\\ &={{\sinh x\cosh y-\cosh x\sinh y}\over{\cosh x\cosh y-\sinh y\sinh x}}\cr% \omit\span\omit\@@LTX@noalign{\hbox{an expression which reduces by part (ii) % and a result of lectures to}}\\ &={{\sinh(x-y)}\over{\cosh(x-y)}}\cr&=\tanh(x-y)={\hbox{LHS}}.\cr}

You may have seen a similar proof used to prove the corresponding identity for tan(x-y)\tan(x-y).

[2] for complete and correct calculation

award partial marks for steps

(iv) The function coshx\cosh x with x0x\geq 0 has range [1,)[1,\infty) and is strictly increasing, so we can introduce f:[0,)[1,)f:[0,\infty)\rightarrow[1,\infty) with inverse cosh-1:[1,)[0,)\cosh^{-1}:[1,\infty)\rightarrow[0,\infty); so cosh-1\cosh^{-1} has domain [1,)[1,\infty) and codomain [0,)[0,\infty).

[1] for correct statement

[6] total for question

A2.2. (i) Intercepts. When x=0x=0 we have y=3/4y=3/4; further the intercept with the xx-axis is given by the solutions of the quadratic equation y=0y=0; that is

x2+6x-3=0,x^{2}+6x-3=0,

so the roots are

x=-6±62+4×32=-3±23.x={{-6\pm\sqrt{6^{2}+4\times 3}}\over{2}}=-3\pm 2\sqrt{3}.

[1] for intercepts

surd better than decimal

(ii) By polynomial long division we have

y=x2+6x-3x-4=x+10+37x-4y={{x^{2}+6x-3}\over{x-4}}=x+10+{{37}\over{x-4}} *

since one can divide

x+10x-4|x2+6x-3x2-4x10x-310x-4037.\matrix{&&&x&+10\cr x-4&|&x^{2}&+6x&-3\cr&&x^{2}&-4x&\cr&&&10x&-3\cr&&&10x&-40% \cr&&&&37.\cr}

[1] any method acceptable

From (*)(*), we see that yy\rightarrow\infty as xx\rightarrow\infty; likewise, y-y\rightarrow-\infty as x-x\rightarrow-\infty. (One can say that f(x)f(x) has asymptote y=x+10y=x+10 as x±x\rightarrow\pm\infty.)

[1] for a proper statement

(iii) Also from (*)(*) we see that y-y\rightarrow-\infty as x(4)-x\rightarrow(4)-, and yy\rightarrow\infty as x(4)+x\rightarrow(4)+; (One can say that x=4x=4 is a vertical asymptote.)

[1] needs justification

[4] total for question