MATH101 Calculus Assessed Exercise 1 Solutions


total [10] marks

The induction questions are very important;


note the importance of correct layout


A1.1. By long division we obtain q(X)=2X+(1/2)q(X)=2X+(1/2) and r(X)=23X/2r(X)=23X/2;

2X+(1/2)2X2+3X-4|4X3+7X2+5X-24X3+6X2-8XX2+13X-2X2+(3/2)X-223X/2\matrix{&&&&2X&+(1/2)\cr 2X^{2}+3X-4&|&4X^{3}&+7X^{2}&+5X&-2\cr&&4X^{3}&+6X^{2% }&-8X&\cr&&&X^{2}&+13X&-2\cr&&&X^{2}&+(3/2)X&-2\cr&&&&23X/2&\cr}

so that q(X)=2X+(1/2)q(X)=2X+(1/2) and r(X)=23X/2.r(X)=23X/2.

[2] marks


A1.2 Let PnP_{n} be the statement

13+23++n3=14n2(n+1)2.1^{3}+2^{3}+\dots+n^{3}={{1}\over{4}}n^{2}(n+1)^{2}.

Basis of induction:P1P_{1} asserts that 13=14.11.221^{3}={{1}\over{4}}.1^{1}.2^{2}, which is true.

Induction step: suppose that PkP_{k} holds for some integer k1k\geq 1 and consider Pk+1.P_{k+1}. We have, by PkP_{k},

13+23++k3+(k+1)3=(13+23++k3)+(k+1)3=14k2(k+1)2+(k+1)3and taking out common factors we see that this is=14(k+1)2(k2+4k+4)=14(k+1)2(k+2)2.\eqalign{1^{3}+2^{3}+\dots+k^{3}+(k+1)^{3}&=\bigl(1^{3}+2^{3}+\dots+k^{3}\bigr% )+(k+1)^{3}\cr&={{1}\over{4}}k^{2}(k+1)^{2}+(k+1)^{3}\cr\omit\span\omit% \@@LTX@noalign{{\hbox{and taking out common factors we see that this is}}}\\ &={{1}\over{4}}(k+1)^{2}(k^{2}+4k+4)\cr&={{1}\over{4}}(k+1)^{2}(k+2)^{2}.\cr}

Hence Pk+1P_{k+1} holds; hence PnP_{n} holds for all n1n\geq 1 by induction.

[2] marks for calculation

Total [2] for question

A1.3 Let PnP_{n} be the statement

k=1nr2r=2-n+22n.\sum_{k=1}^{n}{{r}\over{2^{r}}}=2-{{n+2}\over{2^{n}}}.

Induction step:P1P_{1} asserts that

12=2-32,{{1}\over{2}}=2-{{3}\over{2}},

which is true.

[1]

Induction step: Assume that PnP_{n} holds for some nn, and consider Pn+1P_{n+1}; then

r=1n+1r2r=r=1nr2r+n+12n+1=2-n+22n+n+12n+1=2-2n+42n+1+n+12n+1=2-n+32n+1,\eqalignno{\sum_{r=1}^{n+1}{{r}\over{2^{r}}}&=\sum_{r=1}^{n}{{r}\over{2^{r}}}+% {{n+1}\over{2^{n+1}}}\cr&=2-{{n+2}\over{2^{n}}}+{{n+1}\over{2^{n+1}}}\cr&=2-{{% 2n+4}\over{2^{n+1}}}+{{n+1}\over{2^{n+1}}}\cr&=2-{{n+3}\over{2^{n+1}}},\cr}

hence Pn+1P_{n+1} holds, and hence result by induction.

[1] marks for calculation

Total [2] for question

A1.4. The partial fraction decomposition of the nthn^{th} term is

1n(n+2)=An+Bn+2{{1}\over{n(n+2)}}={{A}\over{n}}+{{B}\over{n+2}}

so 1=A(n+2)+Bn1=A(n+2)+Bn and we have the pair of equations

1=2A,  0=A+B1=2A,\qquad 0=A+B

with solutions A=1/2A=1/2 and B=-1/2.B=-1/2. In the series we expand the sum and regroup terms; the nthn^{th} term is

1n(n+2)=12(1n-1n+2){{1}\over{n(n+2)}}={{1}\over{2}}\Bigl({{1}\over{n}}-{{1}\over{n+2}}\Bigr)

[1] for partial fractions by any method

so the NthN^{th} partial sum is

SN=113+124++1N(N+2)=12[(1-13)+(12-14)+(13-15)++(1N-1-1N+1)+(1N-1N+2)],where the second term in each pair cancels with the first term in the pair thatis two steps to the right, soSN=12[1+12-1N+1-1N+2].\eqalign{S_{N}&={{1}\over{1\cdot 3}}+{{1}\over{2\cdot 4}}+\dots+{{1}\over{N(N+% 2)}}\cr&={{1}\over{2}}\Bigl[\Bigl(1-{{1}\over{3}}\Bigr)+\Bigl({{1}\over{2}}-{{% 1}\over{4}}\Bigr)+\Bigl({{1}\over{3}}-{{1}\over{5}}\Bigr)+\dots+\Bigl({{1}% \over{N-1}}-{{1}\over{N+1}}\Bigr)+\Bigl({{1}\over{N}}-{{1}\over{N+2}}\Bigr)% \Bigr],\cr\omit\span\omit\@@LTX@noalign{\hbox{where the second term in each % pair cancels with the first term in the pair that}}\\ \omit\span\omit\@@LTX@noalign{\hbox{is two steps to the right, so}}\\ S_{N}&={{1}\over{2}}\Bigl[1+{{1}\over{2}}-{{1}\over{N+1}}-{{1}\over{N+2}}\Bigr% ].\cr}

[2] for correct justification of this

As NN\rightarrow\infty,

12[1+12-1N+1-1N+2]34,{{1}\over{2}}\Bigl[1+{{1}\over{2}}-{{1}\over{N+1}}-{{1}\over{N+2}}\Bigr]% \rightarrow{{3}\over{4}},

hence the sum to infinity of this series is

113+124+135+=34.{{1}\over{1\cdot 3}}+{{1}\over{2\cdot 4}}+{{1}\over{3\cdot 5}}+\dots={{3}\over% {4}}.

[1] for taking limit correctly

Total for question [4]

Alternatively,

SN=12[(1-13)+(12-14)+(13-15)+(1N-1-1N+1)+(1N-1N+2)],\eqalignno{S_{N}&={{1}\over{2}}\Bigl[\Bigl(1-{{1}\over{3}}\Bigr)\cr&\quad+% \Bigl({{1}\over{2}}-{{1}\over{4}}\Bigr)\cr&\quad+\Bigl({{1}\over{3}}-{{1}\over% {5}}\Bigr)\cr&\quad\vdots\cr&\quad+\Bigl({{1}\over{N-1}}-{{1}\over{N+1}}\Bigr)% \cr&\quad+\Bigl({{1}\over{N}}-{{1}\over{N+2}}\Bigr)\Bigr],\cr}

and one can cancel by knights’ moves, to get

SN=12[1+12-1N+1-1N+2].S_{N}={{1}\over{2}}\Bigl[1+{{1}\over{2}}-{{1}\over{N+1}}-{{1}\over{N+2}}\Bigr].

The cancellation pattern suggests Knights’ moves in chess.