Home page for accesible maths Math 101 Chapter 4: Taylor series and complex numbers

Style control - access keys in brackets

Font (2 3) - + Letter spacing (4 5) - + Word spacing (6 7) - + Line spacing (8 9) - +

4.10 The general binomial theorem

Binomial Theorem (Newton)

For α\alpha\, real and -1<x<1-1<x<1\,, the following series converges

(1+x)α=1+αx+α(α-1)2!x2+α(α-1)(α-2)3!x3+.(1+x)^{\alpha}=1+\alpha x+{{\alpha(\alpha-1)}\over{2!}}x^{2}+{{\alpha(\alpha-1% )(\alpha-2)}\over{3!}}x^{3}+\dots. *

Solution. The Maclaurin series for f(x)=(1+x)αf(x)=(1+x)^{\alpha}\, has coefficients given by

f(x)=(1+x)α,  f(0)=1;f(x)=(1+x)^{\alpha},\qquad f(0)=1;
f(x)=α(1+x)α-1,  f(0)=α;f^{\prime}(x)=\alpha(1+x)^{\alpha-1},\qquad f^{\prime}(0)=\alpha;
f′′(x)=α(α-1)(1+x)α-2,  f′′(0)=α(α-1);f^{\prime\prime}(x)=\alpha(\alpha-1)(1+x)^{\alpha-2},\qquad f^{\prime\prime}(0% )=\alpha(\alpha-1);
f′′′(x)=α(α-1)(α-2)(1+x)α-3,  f′′′(0)=α(α-1)(α-2);f^{\prime\prime\prime}(x)=\alpha(\alpha-1)(\alpha-2)(1+x)^{\alpha-3},\qquad f^% {\prime\prime\prime}(0)=\alpha(\alpha-1)(\alpha-2);
  \vdots\qquad\vdots